typically includes interface and processing circuitry for providing system control to the cell-sites. Controller 10 also controls the routing of telephone calls from the public switched telephone network (PSTN) to the appropriate cell-site for transmission to the appropriate 5 mobile unit, controller 10 also controls the routing of calls fromt he mobile units, via at least one cell-site, to the PSTN. Controller 10 may connect calls between mobile users via the appropriate cell-sites since the mobile units do not typically communicate directly with 10 one another. Controller 10 may be coupled to the cell-sites by various means such as dedicated telephone lines, optical fiber links or microwave communication links. In FIG. 1, two such exemplary cell-sites 12 and 14 including, along with mobile units 16 and 18 each including a cellular telephone are illustrated. Cell-sites 12 and 14 as discussed herein and illustrated in the drawings are considered to service an entire cell. However it should be understood that the cell may be geographically divided into sectors with each sector treated as a different coverage area. Accordingly, handoffs are made between sectors of a same cell as is described herein for multiple cells, while diversity may also be achieved 25 between sectors as is for cells. In FIG. 1, arrowed lines 20a-20b and 22a-22b respectively define the possible communication links between cell-site 12 and mobile unit 16 and 18. Similarly, arrowed lines 24a-24b and 26a-26b respectively define 30 the possible communication links between cell-site 14 and mobile units 16 and 18. Cell-sites 12 and 14 nominally transmit using equal power. The cell-site service areas or cells are designed in geographic shapes such that the mobile unit will normally be closest to one cell-site, and within one cell sector should the cell be divided into sectors. When the mobile unit is idle, i.e. no calls in progress, the mobile unit constantly monitors the pilot signal transmissions from each nearby cell-site, and if applicable from a 40 cated to one cellular service carrier. single cell-site in which the cell is sectorized. As illustrated in FIG. 1, the pilot signals are respectively transmitted to mobile unit 16 by cell-sites 12 and 14 upon outbound or forward communication links 20a and 26a. Mobile unit 16 can determine which cell it is in by com- 45 paring signal strength in pilot signals transmitted from cell-sites 12 and 14. In the example illustrated in FIG. 1, mobile unit 16 may be considered closest to cell-site 12. When mobile unit 16 initiates a call, a control message is transmitted 50 to the nearest cell-site, cell-site 12. Cell-site 12 upon receiving the call request message, transfers the called number to system controller 10. System controller 10 then connects the call through the PSTN to the intended recipient. Should a call be initiated within the PSTN, controller 10 transmits the call information to all the cell-sites in the area. The cell-sites in return transmit a paging message within each respective coverage area that is intended for the called recipient mobile user. When the 60 bodiment for the cell-site transmitted signals utilizes a intended recipient mobile unit hears the page message, it responds with a control message that is transmitted to the nearest cell-site. This control message signals the system controller that this particular cell-site is in communication with the mobile unit. Controller 10 then 65 routes the call through this cell-site to the mobile unit. Should mobile unit 16 move out of the coverage area of the initial cell-site, cell-site 12, an attempt is made to continue the call by routing the call through another With respect to cellular telephone systems. The Federal Communications Commission (FCC) has allocated a total of 25 MHz for mobile-to-cell links and 25 MHz for cell-to-mobile links. The FCC has divided the allocation equally between two service providers, one of which is the wireline telephone company for the service area and the other chosen by lottery. Because of the order in which allocations were made, the 12.5 MHz allocated to each carrier for each direction of the link is further subdivided into two sub-bands. For the wireline carriers, the sub-bands are each 10 MHz and 2.5 MHz wide. For the non-wireline carriers, the sub-bands are each 11 MHz and 1.5 MHz wide. Thus, a signal bandwidth of less than 1.5 MHz could be fit into any of the sub-bands, while a bandwidth of less than 2.5 MHz could be fit into all but one sub-band. To preserve maximum flexibility in allocating the CDMA technique to the available cellular frequency spectrum, the waveform utilized in the cellular telephone system should be less than 1.5 MHz in bandwidth. A good second choice would be a bandwidth of about 2.5 MHz. allowing full flexibility to the wireline cellular carriers and nearly full flexibility to non-wireline cellular carriers. While using a wider bandwidth has the advantage of offering increased multipath discrimination, disadvantages exist in the form of higher equipment costs and lower flexibility in frequency assignment within the allocated bandwidth. In a spread spectrum cellular telephone system, such as illustrated in FIG. 1, the preferred waveform design implemented involves a direct sequence pseudonoise spread spectrum carrier. The chip rate of the PN sequence is chosen to be 1.2288 MHz in the preferred embodiment. This particular chip rate is chosen so that the resulting bandwidth, about 1.25 MHz after filtering. is approximately one-tenth of the total bandwidth allo- Another consideration in the choice of the exact chip rate is that it is desirable that the chip rate be exactly divisible by the baseband data rates to be used in the system. It is also desirable for the divisor to be a power of two. In the preferred embodiment, the baseband data rate is 9600 bits per second, leading to a choice of 1.2288 MHz, 128 times 9600 for the PN chip rate. In the cell-to-mobile link, the binary sequences used for spreading the spectrum are constructed from two different types of sequences, each with different properties to provide different functions. There is an outer code that is shared by all signals in a cell or sector that is used to discriminate between multipath signals. The outer code is also used to discriminate between signals transmitted by different cells or sectors to the mobile units. There is also an inner code that is used to discriminate between user signals transmitted by single sector or ceii. The carrier waveform design in the preferred emsinusoidal carrier that is quadraphase (four phase) modulated by a pair of binary PN sequences that provide the outer code transmitted by a single sector or cell. The sequences are generated by two different PN generators of the same sequence length. One sequence bi-phase modulates the in-phase channel (I Channel) of the carrier and the other sequence bi-phase modulates the quadrature phase (Q Channel) of the carrier. The resulting signals are summed to form a composite four-phase carrier. Although the values of a logical "zero" and a logical "one" are conventionally used to represent the binary sequences, the signal voltages used in the modulation 5 process are +V volts for a logical "one" and -V volts for a logical "zero". To bi-phase modulate a sinusoidal signal, a zero volt average value sinusoid is multiplied by the +V or -V voltage level as controlled by the binary sequences using a multiplier circuit. The result- 10 ing signal may then be band limited by passing through a bandpass filter. It is also known in the art to lowpass filter the binary sequence stream prior to multiplying by the sinusoidal signal, thereby interchanging the order of the operations. A quadraphase modulator consists of 15 two bi-phase modulators each driven by a different sequence and with the sinusoidal signals used in the bi-phase modulators having a 90° phase shift therebetween. In the preferred embodiment, the sequence length for 20 the transmitted signal carrier is chosen to be 32.768 chips. Sequences of this length can be generated by a modified maximal-length linear sequence generator by adding a zero bit to a length 32.767 chip sequence. The resulting sequence has good cross-correlation and auto- 25 correlation properties. Good cross-correlation and autocorrelation properties are necessary to prevent mutual interference between pilot carriers transmitted by different cells. A sequence this short in length is desirable in order to 30 minimize acquisition time of the mobile units when they first enter the system without knowledge of system timing. With unknown timing, the entire length of the sequence must be searched to determine the correct timing. The longer the sequence, the longer time the 35 acquisition search will require. Although sequences shorter than 32,768 could be used, it must be understood that as sequence length is reduced, the code processing gain is reduces. As processing gain is reduced, the rejection of multipath interference along with interference 40 from adjacent cells and other sources will also be reduced, perhaps to unacceptable levels. Thus, there is a desire to use the longest sequence that can be acquired in a reasonable time. It is also desirable to use the same code polynomials in all cells so that the mobile unit, not 45 W(8) is as follows: knowing what cell it is in when initially acquiring synchronization, can obtain full synchronization by searching a single code polynomial. In order to simplify the synchronization process, all the cells in the system are synchronized to each other. 50 In the exemplary embodiment, cell synchronization is accomplished by synchronizing all the cells to a common time reference, the Navstar Global Positioning System satellite navigation system which is itself synchronized to Universal Coordinated Time (UTC). Signals from different cells are differentiated by providing time offsets of the
basic sequences. Each cell is assigned a different time offset of the basic sequences differing from its neighbors. In the preferred embodiment, the 32,768 repetition period is divided into a set of 60 sequences, each of length n bits. 512 timing offsets. The 512 offsets are spaced 64 chips apart. Each sector of each cell in a cellular system is also assigned a different one of the offsets to use for all its transmissions. If there are more than 512 sectors or cells in the system, then the offsets can be reused in the 65 same manner as frequencies are reused in the present analog FM cellular system. In other designs, a different number than 512 offsets could be used. With reasonable care in assignment of pilot offsets, it should never be necessary for near neighboring cells to use near neighboring time offsets. All signals transmitted by a cell or one of the sectors of the cell share the same outer PN codes for the I and O channels. The signals are also spread with an inner orthogonal code generated by using Walsh functions. A signal addressed to a particular user is multiplied by the outer PN sequences and by a particular Walsh sequence, or sequence of Walsh sequences, assigned by the system controller for the duration of the user's telephone call. The same inner code is applied to both the I and Q channels resulting in a modulation which is effectively bi-phase for the inner code. It is well known in the art that a set of n orthogonal binary sequences, each of length n, for n any power of 2 can be constructed, see Digital Communications with Space Applications, S. W. Golomb et al., Prentice-Hall, Inc, 1964, pp. 45-64. In fact, orthogonal binary sequence sets are also known for most lengths which are multiples of four and less than two hundred. One class of such sequences that is easy to generate is called the Walsh function, also known as Hadamard matrices. A Walsh function of order n can be defined recursively as follows: $$W(n) = \begin{bmatrix} W(n/2), W(n/2) \\ W(n/2), W(n/2) \end{bmatrix}$$ where W' denotes the logical complement of W, and W(1) = |0|. Thus. $$W(2) = \begin{bmatrix} 0, 0 \\ 0, 1 \end{bmatrix}$$ and A Walsh sequence is one of the rows of a Walsh function matrix. A Walsh function of order n contains n A Walsh function of order n (as well as other orthogonal functions) has the property that over the interval of n code symbols, the cross-correlation between all the different sequences within the set is zero, provided that the sequences are time aligned with each other. This can be seen by noting that every sequence differs from every other sequence in exactly half of its bits. It should also be noted that there is always one sequence containing all zeroes and that all the other sequences contain half ones and half zeroes. Neighboring cells and sectors can reuse the Walsh sequences because the outer PN codes used in neighboring cells and sectors are distinct. Because of the differ- 5 ing propagation times for signals between a particular mobile's location and two or more different cells, it is not possible to satisfy the condition of time alignment required for Waish function orthogonality for both cells at one time. Thus, reliance must be placed on the outer 10 PN code to provide discrimination between signals arriving at the mobile unit from different cells. However, all the signals transmitted by a cell are orthogonal to each other and thus do not contribute interference to each other. This eliminates the majority of the interfer- 15 ence in most locations, allowing a higher capacity to be obtained. The system further envisions the voice channel to be a variable rate channel whose data rate can be varied from data block to data block with a minimum of over- 20 head required to control the data rate in use. The use of variable data rates reduces mutual interference by eliminating unnecessary transmissions when there is no useful speech to be transmitted. Algorithms are utilized within the vocoders for generating a varying number of 25 bits in each vocoder block in accordance with variations in speech activity. During active speech, the vocoder may produce 20 msec. data blocks containing 20, 40, 80, or 160 bits, depending on the activity of the speaker. It is desired to transmit the data blocks in a 30 fixed amount of time by varying the rate of transmission. It is further desirable not to require signalling bits to inform the receiver how many bits are being transmitted. The blocks are further encoded by the use of a cyclic 35 redundancy check code (CRCC) which appends to the block an additional set of parity bits which can be used to determine whether or not the block of data has been decoded correctly. CRCC check codes are produced by dividing the data block by a predetermined binary 40 polynomial. The CRCC consists of all or a portion of the remainder bits of the division process. The CRCC is checked in the receiver by reproducing the same remainder and checking to see of the received remainder bits are the same as the regenerated check bits. In the disclosed invention, the receiving decoder decodes the block as if it contains 160 bits, and then again as if it contains 80 bits, etc. until all possible block lengths have been tried. The CRCC is computed for each trial decoding. If one of the trial decodings results 50 rate synchronization. In the preferred embodiment, a in a correct CRCC, the data block is accepted and passed on to the vocoder for further processing. If no trial decoding produces a valid CRCC, the received symbols are passed on to the system's signal processor where other processing operations can optionally be 55 performed. In the cell transmitter, the power of the transmitted waveform is varied as the data rate of the block is varied. The highest data rate uses the highest carrier power. When the data rate is lower than the maximum. 60 the modulator, in addition to lowering the power, repeats each encoded data symbol a number of times as required to achieve the desired transmission rate. For example, at the lowest transmission rate, each encoded symbol is repeated four times. In the mobile transmitter, the peak power is held constant but the transmitter is gated off 1, or 1 or 1 of the time in accordance with the number of bits to be transmitted in the data block. The positions of the ontimes of the transmitter is varied pseudo-randomly in accordance with the mobile user's addressed user code. ### CELL-TO-MOBILE LINK In the preferred embodiment, the Walsh function size n. is set equal to sixty-four (n = 64) for the cell-to-mobile link. Therefore each of up to sixty-four different signals to be transmitted are assigned a unique orthogonal sequence. The forward error correction (FEC) encoded symbol stream for each voice conversation is multiplied by its assigned Walsh sequence. The Walsh coded/FEC encoded symbol stream for each voice channel is then multiplied by the outer PN coded waveform. The resultant spread symbol streams are then added together to form a composite waveform. The resulting composite waveform is then modulated onto a sinusoidal carrier, bandpass filtered, translated to the desired operating frequency, amplified and radiated by the antenna system. Alternate embodiments of the present invention may interchange the order of some of the just described operations for forming the cell-site transmitted signal. For example, it may be preferred to multiply each voice channel by the outer PN coded waveform and perform the filtering operation prior to summation of all the channel signals to be radiated by the antenna. It is well known in the art that the order of linear operations may be interchanged to obtained various implementation advantages and different designs. The waveform design of the preferred embodiment for cellular service uses the pilot carrier approach for the cell-to-mobile link as described in U.S. Pat. No. 4,901,307. All cells transmit pilot carriers using the same 32,768 length sequence, but with different timing offsets to prevent mutual interference. The pilot waveform uses the all-zero Walsh sequence, i.e., a Walsh sequence comprised of all zeroes that is found in all Walsh function sets. The use of all-zero Walsh sequence for all cells' pilot carriers allows the initial search for the pilot waveform to ignore the Walsh functions until after the outer code PN synchronization has been obtained. The Walsh framing is locked to the PN code cycle by virtue of the length of the Walsh frame being a factor of the PN sequence 45 length. Therefore, provided that the cell addressing offsets of the PN code are multiples of sixty-four chips (or the Walsh frame length) then the Walsh framing is known implicitly from the outer PN code timing cycle. All the cells in a service area are supplied with accu-GPS receiver at each cell synchronizes the local waveform timing to Universal Coordinated Time (UTC). The GPS system allows time synchronization to better than I microsecond accuracy. Accurate synchronization of cells is desirable in order to allow easy handoff of calls between calls when mobiles move from one cell to another with a call in progress. If the neighboring cells are synchronized, the mobile unit will not have difficulty synchronizing to the new cell thereby facilitating a smooth handoff. The pilot carrier is transmitted at a higher power level than a typical voice carrier so as to provide greater signal to noise and interference margin for this signal. The higher power level pilot carrier enables the 65 initial acquisition search to be done at high speed and to make possible a very accurate tracking of the carrier phase of the pilot carrier by a relatively wide bandwidth phase tracking circuit. The carrier phase obtained from tracking the pilot carrier is used as the carrier phase reference for demodulation of the carriers modulated by user information signals. This technique allows many user carriers to share the common pilot signal for
carrier phase reference. For example, in a system transmitting a total of fifteen simultaneous voice carriers, the pilot carrier might be allocated a transmit power equal to four voice carriers. In addition to the pilot carrier, another carrier intended to be received by all system users in the cell is transmitted by the cell-site. This carrier, called the synchronization channel, also uses the same 32,768 length PN sequence for spectrum spreading but with a different, pre-assigned Walsh sequence. The synchronization channel transmits a broadcast message containing system information for use by the mobiles in the system. The system information identifies the cell-site and the system and conveys information allowing the long PN codes used for mobile information signals to be synchronized without additional searching. Another channel, called the paging channel may be provided to transmit messages to mobiles indicating that a call has arrived for them, and to respond with channel assignments when a mobile initiates a call. Each voice carrier transmits a digital representation 25 of the speech for a telephone call. The analog speech waveform is digitized using standard digital telephone techniques and then compressed using a vocoding process to a data rate of approximately 9600 bits per second. This data signal is then rate $r=\frac{1}{2}$, constraint length 30 K=9 convolutional encoded, with repetition, and interleaved in order to provide error detection and correction functions which allow the system to operate at a much lower signal-to-noise and interference ratio. Techniques for convolutional encoding, repetition and 35 interleaving are well known in the art. The resulting encoded symbols are multiplied by an assigned Walsh sequence and then multiplied by the outer PN code. This process results in a PN sequence rate of 1.2288 MHz or 128 times the 9600 bps data rate. 40 The resulting signal is then modulated onto an RF carrier and summed with the pilot and setup carriers, along with the other voice carriers. Summation may be accomplished at several different points in the processing such as at the IF frequency, or at the baseband frequency either before or after multiplication by the PN sequence. Each voice carrier is also multiplied by a value that sets its transmitted power relative to the power of the other voice carriers. This power control feature allows 50 power to be allocated to those links that require higher power due to the intended recipient being in a relatively unfavoring location. Means are provided for the mobiles to report their received signal-to-noise ratio to allow the power to be set at a level so as to provide 55 adequate performance without waste. The orthogonality property of the Walsh functions is not disturbed by using different power levels for the different voice carriers provided that time alignment is maintained. FIG. 2 illustrates in block diagram from an exemplary 60 embodiment cell-site equipment. At the cell-site, two receiver systems are utilized with each having a separate antenna and analog receiver for space diversity reception. In each of the receiver systems the signals are processed identically until the signals undergoes a di-65 versity combination process. The elements within the dashed lines correspond to elements corresponding to the communications between the cell-site and one mo- bile unit. The output of the analog receivers are also provided to other elements used in communications with other mobile units. In FIG. 2, the first receiver system is comprised of antenna 30, analog receiver 32, searcher receiver 34 and digital data receiver 36. The first receiver system may also include an optional digital data receiver receiver 38. The second receiver system includes antenna 40, analog receiver 42, searcher receiver 44 and digital data receiver 46. The cell-site also includes cell-site control processor 48. Control processor 48 is coupled to data receivers 36, 38, and 46 along with searcher receivers 34 and 44. Control processor 48 provides among other functions, functions such as signal processing; timing signal generation; power control; and control over handoff, diversity, diversity combining and system control processor interface with the MTSO (FIG. 8). Walsh sequence assignment along with transmitter and receiver assignment is also provided by control processor 48. Both receiver systems are coupled by data receivers 36. 38. and 46 to diversity combiner and decoder circuitry 50. Digital link 52 is coupled to receive the output of diversity combiner and decoder circuitry 50. Digital link 52 is also coupled to control processor 48, cell-site transmit modulator 54 and the MTSO digital switch. Digital link 52 is utilized to communicate signals to and from the MTSO (FIG. 8) with cell-site transmit modulator 54 and circuitry 50 under the control of control processor 48. The mobile unit transmitted signals are direct sequence spread spectrum signals that are modulated by a PN sequence clocked at a predetermined rate, which in the preferred embodiment is 1.2288 MHz. This clock rate is chosen to be an integer multiple of the baseband data rate of 9.6 Kbps. Signals received on antenna 30 are provided to analog receiver 32. The details of receiver 32 are further illustrated in FIG. 3. Signals received on antenna 30 are provided to downconverter 100 which is comprised of RF amplifier 102 and mixer 104. The received signals are provided as an input to RF amplifier where they are amplified and output to an input to mixer 104. Mixer 104 is provided another input, that being the output from frequency synthesizer 106. The amplified RF signals are translated in mixer 104 to an IF frequency by mixing with the frequency synthesizer output signal. The IF signals are then output from mixer 104 to bandpass filter (BPF) 108, typically a Surface Acoustic Wave (SAW) filter having a passband of 1.25 MHz. where they are bandpass filtered. The filtered signals are output from BPF 166 to IF amplifier 116 where the signals are amplified. The amplified IF signals are output from IF amplifier 110 to analog to digital (A/D) converter 112 where they are digitized at a 9.8304 MHz clock rate which is exactly 8 times the PN chip rate. Although (A/D) converter 112 is illustrated as part of receiver 32, it could instead be a part of the data and searcher receivers. The digitized IF signals are output from (A/D) converter 112 to data receiver 36, optional data receiver 38 and searcher receiver 34. The signals output from receiver 32 and I and Q channel signals as discussed later. Although as illustrated in FIG. 3 with A/D converter 112 being a single device, with later splitting of the I and Q channel signals, it is envisioned that channel splitting may be done prior to digitizing with two separate A/D converters provided for digitizing the I and Q channels. Schemes for the RF-IF-Baseband frequency downconversion and analog to digital conversion for I and Q channels are well known in the Searcher receiver 34 is used to at the cell-site to scan the time domain about the received signal to ensure that 5 the associated digital data receiver 36, and data receiver 38 if used, are tracking and processing the strongest available time domain signal. Searcher receiver 64 provides a signal to cell-site control processor 48 which provides control signals to digital data receivers 36 and 10 38 for selecting the appropriate received signal for processing. The signal processing in the cell-site data receivers and searcher receiver is different in several aspects than the signal processing by similar elements in the mobile 15 unit. In the inbound, i.e. reverse or mobile-to-cell link, the mobile unit does not transmit a pilot signal that can be used for coherent reference purposes in signal processing at the cell-site. The mobile-to-cell link is characterized by a non-coherent modulation and demodula- 20 tion scheme using 64-ary orthogonal signalling. In the 64-ary orthogonal signalling process, the mobile unit transmitted symbols are encoded in a one of 26, i.e. 64, different binary sequences. The set or sequences chosen are known as Walsh functions. The optimum 25 receive function for the Walsh function m-ary signal encoding is the Fast Hadamard Transform (FHT). Referring again to FIG. 2, searcher receiver 34 and digital data receivers 36 and 38, receive the signals output from analog receiver 32. In order to decode the 30 spread spectrum signals transmitted to the particular cell-site receiver through which the mobile unit communicates, the proper PN sequences must be generated. Further details on the generation of the mobile unit signals are discussed later herein. As illustrated in FIG. 3, receiver 36 includes two PN generators, PN generators 120 and 122, which generate two different short code PN sequences of the same length. These two PN sequences are common to those of all cell-site receivers and all mobile units with respect 40 algorithm decoder implemented in circuitry 50. to the outer code of the modulation scheme as discussed in further detail later herein. PN generators 120 and 122 thus respectively provide the output sequences, PN₁ and PNo. The PN/and PNo sequences are respectively referred to as the In-Phase (I) and Quadrature (Q) chan- 45 nel PN sequences. The two PN sequences. PN/and PNQ, are generated by different polynomials of degree 15, augmented to produce sequences of length 32,768 rather than 32,767 which would normally be produced. For example, the 50 augmentation may appear in the form of the addition of a single zero to the run of fourteen 0's in a row which appears one time in every maximal-length linear sequence of degree 15. In other words, one state of the PN generator would be repeated in the generation of 55 signal it is receiving. This is accomplished by the well the sequence. Thus the modified sequence contains one run of fifteen I's and one run of fifteen O's. In the exemplary
embodiment receiver 36 also includes a long code PN generator 124 which generates a PNu sequence corresponding to a PN sequence gener- 60 ated by the mobile unit in the mobile-to-cell link. PN generator 124 can be a maximal-length linear sequence generator that generates a user PN code that is very long, for example degree 42, time shifted in accordance with an additional factor such as the mobile unit address 65 or user ID to provide discrimination among users. Thus the cell-site received signal is modulated by both the long code PNy sequence and the short code PNy and PNo sequences. In the alternative, a non-linear encryption generator, such as an encryptor using the data encryption standard (DES) to encrypt a 64-symbol representation of universal time using a user specific key, may be utilized in place of PN generator 124. The PNy sequence output from PN generator 124 is exclusive-OR'ed with the PN1 and PN0 sequences respectively in exclusive-OR gates 126 and 128 to provide the sequences PN/ and PNo. The sequences PN/ and PNo' are provided to PN QPSK correlator 130 along with the I and Q channel signals output from receiver 32. Correlator 130 is is utilized to correlate the I and Q channel data with the PN; and PNg sequences. The correlated I and Q channel outputs of correlator 130 are respectively provided to accumulators 132 and 134 where the symbol data is accumulated over a 4-chip period. The outputs of accumulators 132 and 134 are provided as inputs to Fast Hadamard Transform (FHT) processor 136. FHT processor 148 produces a set of 64 coefficients for every 6 symbols. The 64 coefficients are then multiplied by a weighing function generated in control processor 48. The weighting function is linked to the demodulated signal strength. The weighted data output from FHT 136 is provided to diversity combiner and decoder circuitry 50 (FIG. 2) for further processing. The second receiver system processes the received signals in a manner similar to that discussed with respect to the first receiver system of FIGS. 2 and 3. The weighted 64 symbols output from receivers 36 and 46 are provided to diversity combiner and decoder circuitry 40. Circuitry 50 includes an adder which adds the weighted 64 coefficients from receiver 36 to the weighted 64 coefficients from receiver 46. The resulting 35 64 coefficients are compared with one another in order to determine the largest coefficient. The magnitude of the comparison result, together with the identity or the largest of the 64 coefficients, is used to determine a set of decoder weights and symbols for use within a Viterbi The Viterbi decoder contained within circuitry 50 is of a type capable of decoding data encoded at the mobile unit with a constraint length K=9, and of a code rate $r = \frac{1}{2}$. The Viterbi decoder is utilized to determine the most likely information bit sequence. Periodically, nominally 1.25 msec, a signal quality estimate is obtained and transmitted as a mobile unit power adjustment command along with data to the mobile unit. Further information on the generation of this quality estimate is discussed in further detail in the copending application mentioned above. This quality estimate is the average signal-to-noise ratio over the 1.25 msec interval. Each data receiver tracks the timing of the received known technique of correlating the received signal by a slightly early local reference PN and correlating the received signal with a slightly late local reference PN. The difference between these two correlations will average to zero if there is no timing error. Conversely, if there is a timing error, then this difference will indicate the magnitude and sign of the error and the receiver's timing is adjusted accordingly. The cell-site further includes antenna 62 which is coupled to GPS receiver 64. GPS receiver processes signals received on antenna 62 from satellites in the Navstar Global Positioning System satellite navigation system so as to provide timing signals indicative of Universal Coordinated Time (UTC). GPS receiver 64 provides these timing signals to control processor 48 for timing synchronizing at the cell-site as discussed previ- In FIG. 2 optional digital data receiver 38 may be 5 included for improved performance of the system. The structure and operation of this receiver is similar to that described with reference to the data receivers 36 and 46. Receiver 38 may be utilized at the cell-site to obtain ceiver alone or in combination with additional receivers can track and receive other possible delay paths of mobile unit transmitted signals. Optional additional digital data receivers such as receiver 38 provides addithose cell-sites which are located in dense urban areas where many possibilities for multipath signals occur. Signals from the MTSO are coupled to the appropriate transmit modulator via digital link 52 under control control of control processor 48 spread spectrum modulates the data for transmission to the intended recipient mobile unit. Further details with respect to the structure and operation of transmit modulator 54 are discussed below with reference to FIG. 4. The output of transmit modulator 54 is provided to transmit power control circuitry 56 where under the control of control processor 48 the transmission power may be controlled. The output of circuitry 56 is provided to summer 57 where it is summed with the output 30 of transmit modulator/transmit power control circuits directed to other mobiles in the cell. The output of summer 57 is provided to transmit power amplifier circuitry 58 where output to antenna 60 for radiating to mobile units within the cell service area. FIG. 2 further 35 illustrates pilot/control channel generators and transmit power control circuitry 66. Circuitry 66 under control of control processor generates and power controls the pilot signal, the sync channel, and the paging channel for coupling to circuitry 58 and output to antenna 60. A block diagram of an exemplary embodiment of the cell-site transmitter is illustrated in FIG. 4. The transmitter includes a pair of PN sequence generators used in generating the outer code. These PN generators generate two different PN sequences, i.e. the PN/ and PNQ 45 sequence which consists of all zeroes is used so as to not sequences, as was discussed with reference to FIG. 3. However, these PN/ and PNO sequences are delayed in time according to the sector or cell address In FIG. 4, the transmitter circuitry of FIG. 3 is illustrated in further detail with the pilot, sync, paging and 50 tains only the PN, and PNo sequences. With all cellvoice channel signals. The transmitter circuitry includes two PN generators, PN generators 196 and 198, which generate the PNI and PNQ sequences. PN generators 196 and 198 are responsive to an input signal corresponding to a sector or cell address signal from the 55 control processor so as to provide a predetermined time delay to the PN sequences. These time delayed PN/and PNo sequences again relate respectively to the In-Phase (I) and Quadrature (Q) channels. Although only two PN generators are illustrated for respectively generat- 60 ing the PNI and PNQ sequences for the corresponding channels of the cell-site or sector, it should be understood that many other PN generator schemes may be implemented. For example, in a unsectorized cell, a pair of PN generators may be provided for each of the pilot. 65 other input of exclusive-OR gate 204 receives the PNo sync, paging and voice channels to produce, in synchronization, the PN₁ and PN₀ sequences used in the outer code. Such a case may be advantageous to avoid distrib- uting the PN1 and PNQ sequences throughout a large number of circuits. In the preferred embodiment, Walsh function encoding of the channel signals is employed as the inner code. In the exemplary numerology as disclosed herein, a total of 64 different Walsh sequences are available with three of these sequences dedicated to the pilot, sync and paging channel functions. In the sync, paging and voice channels, input data is convolutionally encoded and additional diversity modes. This additional data re- 10 then interleaved as is well known in the art. Furthermore, the convolutional encoded data is also provided with repetition before interleaving as is also well known in the art. The pilot channel contains no data modulation and is tional diversity modes which are extremely useful in 15 characterized as an unmodulated spread spectrum signal that all of the users of a particular cell-site or sector use for acquisition or tracking purposes. Each cell, or if divided into sectors, each sector has a unique pilot signal. However, rather than using different PN generators of control processor 48. Transmit modulator 54 under 20 for the pilot signals, it is realized that a more efficient way to generate different pilot signals is to use shifts in the same basic sequence. Utilizing this technique a mobile unit sequentially searches the whole sequence and tunes to the offset or shift that produces the strongest correlation. In using this shift of the basic sequence, the shifts must be such that the pilots in adjacent cells or sectors must not interfere or cancel. The pilot sequence must therefore be long enough that many different sequences can be generated by shifts in the basic sequence to support a large number of pilot signals in the system. Furthermore, the separation or shifts must be great enough to ensure that there is no interference in pilot signals. Accordingly, in a exemplary embodiment of the present invention the pilot sequence length is chosen to be 215. The sequence is generated started by a sequence 215-1 with an extra 0 appended to the sequence when a particular state is detected. In the exemplary embodiment there are chosen to be 512 different pilot signals with offsets in 40 the basic sequence of 64 chips. However, offsets may be integer multiples of the 64 chip offset with a corresponding reduction
in the number of different pilot signals. In generating the pilot signal, the Walsh "zero" (Wo) modulate the pilot signal, which in essence is the PN/ and PNo sequences. The Walsh "zero" (Wo) sequence is therefore multiplied by the PNI and PNQ sequences in exclusive-OR gates. The resulting pilot signal thus consites and sectors having the same PN sequence for the pilot signal, the distinguishing feature between cell-sites or sectors of origination of the transmission is the phase of the sequence. With respect to the portion of transmit modulator and power control circuitry 66 for the pilot channel, Walsh generator (Wo) 200 generates a signal corresponding to the all zero function as just discussed. The timing in the generation of the Walsh function is provided by the control processor, as in the case of all Walsh function generators in the cell-site and mobile unit. The output of generator 200 is provided as an input to both of exclusive-OR gates 202 and 204. The other input of exclusive-OR gate 202 receives the PN₁ signal while the signal. The PN/and PNQ signals are respectively exclusive-OR'ed with the output of generator 200 and respectively provided as inputs to Finite Impulse Response (FIR) filters 206 and 208. The filtered signals output from FIR filters 206 and 208 provided to a transmit power control circuitry comprised of gain control elements 210 and 212. The signals provided to gain control elements 210 and 212 are gain controlled in 5 response to input signals (not shown) from the control processor. The signals output from gain control elements, are provided to transmit power amplifier circuitry 58 whose detailed structure and function is described later herein. The sync channel information is encoded and then multiplied in exclusive-OR gates by a preassigned Walsh sequence. In the exemplary embodiment, the selected Walsh function is the (W32) sequence which consists of a sequence of 32 "ones" followed by 32 15 "zeros". The resulting sequence is then multiplied by the PN_I and PN_O sequences in exclusive-OR gates. In the exemplary embodiment the sync channel data information is provided to the transmit modulator typically at a rate of 1200 bps. In the exemplary embodiment the 20 sync channel data is preferably convolutionally encoded at a rate $r = \frac{1}{2}$ with a constraint length K = 9, with each code symbol repeated twice. This encoding rate and constraint length is common to all encoded forward link channels, i.e. sync, paging and voice. In an exem- 25 plary embodiment, a shift register structure is employed for the generators of the code $G_1 = 753$ (octal) and $G_2 = 561$ (octal). The symbol rate to the sync channel is in the exemplary embodiment 4800 sps, i.e. one symbol is 208 usec or 256 PN chips. The code symbols are interleaved by means of a convolutional interleaver spanning in the exemplary embodiment 40 msec. The tentative parameters of the interleaver are I=16 and J=48. Further details on interleaving is found in Data Communication. Networks 35 so that the mobile unit can adjusts its timing accordand Systems, Howard W. Sams & Co., 1987, pp. 343-352. The effect of the convolutional interleaver is to disperse unreliable channel symbols such that any two symbols in a contiguous sequence of I-1 or fewer deinterleaver output. Equivalently, any two symbols in a contiguous sequence of J-1 symbols are separated by at least I+1 symbols at the deinterleaver output. In other words, if I=16 and J=48, in a string of 15 symbols, the symbols are transmitted separated by 885 µsec. 45 thus providing time diversity. The sync channel symbols of a particular cell or sector are tied to the corresponding pilot signal for that cell or sector. FIG. 5 illustrates the timing of two different pilot channels (N) and (N+1) which are separated by a 50 channel assigned for the communication with the moshift of 64 chips. FIG. 5 illustrates only by way of example a timing diagram for the exemplary pilot and sync channels with the state of the actual pilot signal chips and sync channel symbols not illustrated. Each sync channel starts a new interleaver cycle with the first 55 code symbol (c_x) of a code symbol pair (c_x, c'_x) , due to a code repeat of two, shifted with respect to absolute time by an amount equal to the corresponding pilot. As illustrated in FIG. 5. The N pilot channel starts a new interleaver cycle, or pilot sync, at the time tz. Simi- 60 larly, the N+1 pilot channel starts a new interleaver cycle or pilot sync at the time t, which occurs 64 chip later in time than time tx. The pilot cycle in the exemplary embodiment is 26.67 msec long, which corresponds to 128 sync channel code symbols or 32 sync 65 sync channel information is input from the control prochannel information bits. The sync channel symbols are interleaved by a convolutional interleaver which spans 26.67 msec. Thus, when the mobile unit has acquired the pilot signal, it has immediate sync channel interleaver synchronization. The sync channel symbols are covered by the preassigned Walsh sequence to provide orthogonality in the signal. In the sync channel, one code symbol spans four cover sequences, i.e. one code symbol to four repetitions of the "32 one"-"32 zero" sequence, as illustrated in FIG. 6. As illustrated in FIG. 6, a single logical "one" represents the occurance of 32 "one" Walsh chips while a single logical "zero" represents the occurance of 32 "zero" Walsh chips. Orthogonality in the sync channel is still maintained even though the sync channel symbols are skewed with respect to absolute time depending upon the associated pilot channel because sync channel shifts are integer multiples of the Walsh frame. The sync channel messages in the exemplary embodiment are variable in length. The length of the message is an integer multiple of 80 msec which corresponds to 3 pilot cycles. Included with the sync channel information bits are cyclic redundancy (CRC) bits for error detection. FIG. 7 illustrates in the form of a timing diagram the overall exemplary system timing. In the period of two seconds there are 75 pilot cycles. In FIG. 7, the N pilot and sync channels correspond to the sector or cell using the unshifted pilot such that the pilot and sync signals align exactly with UTC time. As such the pilot sync, i.e. initial state, aligns exactly with a common I pulse per second (pps) signal. In all cases in which a shifted pilot is used, a PN phase offset corresponding to the pilot shift is introduced. In other words, pilot sync (initial state) and sync channel messages are skewed with respect to the 1 pps signals. The sync messages carries this phase offset information ingly. As soon as a sync channel message has been correctly received, the mobile unit has the ability to immediately synchronize to either a paging channel or a voice chansymbols are separated by at least J+1 symbols in a 40 nel. At pilot sync, corresponding to the end of each sync message, a new 40 msec interleaver cycle begins. At that time, the mobile unit starts deinterleaving the first code symbol of either a code repetition, or a (cx, c_{x+1}) pair, with decoder synchronization achieved. The deinterleaver write address is initialized to 0 and the read address is initialized to J, memory deinterleaver synchronization is achieved. The sync channel messages carry information regarding the state of a 42-bit long PN generator for the voice bile unit. This information is used at the mobile unit digital data receivers to synchronize the corresponding PN generators. For example, in FIG. 7 the sync channel message N+1 contains a 42-bit field which is indicative of the state, state X, that the sector or cell voice channel corresponding long code PN generator will have at a predetermined later time, such as 160 maec later. The mobile unit, after successfully decoding a sync channel message, loads at the correct instant of time the long code PN generator with the state X. The mobile unit long code PN generator is thus synchronized to permit descrambling of the user intended messages. With respect to the portion of transmit modulator and power control circuitry 66 for the sync channel, the cessor to encoder 214. The sync channel data in the exemplary embodiment is, as discussed above, convolutional encoded by encoder 214. Encoder 214 further provides repetition of the encoded symbols, in the case of the sync channel the encoded symbols are repeated. The symbols output from encoder 214 are provided to interleaver 215 which provides convolutional interleaving of the symbols. The interleaved symbols output 5 from interleaver 215 are provided as an input to exclusive-OR gate 216. Walsh generator 218 generates a signal corresponding to the Walsh (W12) sequence that is provided as the other input to exclusive-OR gate 216. The sync channel 10 symbol stream and the Walsh (W32) sequence are exclusive-OR'ed by exclusive-OR gate 216 with the result thereof provided as an input to both of exclusive-OR gates 220 and 222. The other input of exclusive-OR gate 220 receives the 15 PN/ signal while the other input of exclusive-OR gate 222 receives the PNo signal. The PNo and PNo signals are respectively exclusive-OR'ed with the output of exclusive-OR gate 218 and respectively provided as inputs to Finite Impulse Response (FIR) filters 224 and 20 226. The filtered signals output from FIR filters 224 and 226 provided to a transmit power control circuitry comprised of digital variable gain control elements 228 and 230. The signals provided to gain control elements 228 and 230 are digitally gain controlled in response to 25 input digital signals (not shown) from the control processor. The signals output from gain control elements 228 and 230 are provided to transmit power amplifier circuitry 58. The paging channel information is also encoded with 30 repetition, interleaved and then multiplied by a preassigned Walsh sequence. The resulting sequence is then multiplied by the PN/and
PNosequences. The data rate of the paging channel for a particular sector or cell is indicated in an assigned field in the sync channel mes- 35 sage. Although the paging channel data rate is variable. it is in the exemplary embodiment fixed for each system at one of the following exemplary data rates: 9.6, 4.8, 2.4 and 1.2 kbps. With respect to the transmit modulator and power 40 control circuitry of the paging channel, the paging channel information is input from the control processor to encoder 232. Encoder 232 is in the exemplary embodiment a convolutional encoder that also provides repetition of the symbols according to the assigned data 45 rate of the channel. The output of encoder 232 is provided to interleaver 233 where the symbols are convolutional interleaved. The output from interleaver 233 is provided as an input to exclusive-OR gate 234. Although the paging channel dats rate will vary, the code 50 in order to accomplish energy scaling according to the symbol rate is kept constant at 19.2 ksps by code repetition. Walsh generator 236 generates a signal, corresponding to a preassigned Walsh sequence, that is provided as the other input to exclusive-OR gate 234. The symbol 55 data and Walsh sequence are exclusive-OR'ed by exclusive-OR gate 234 and provided as an input to both of exclusive-OR gates 238 and 240. The other input of exclusive-OR gate 238 receives the PN/ signal while the other input of exclusive-OR gate 60 240 receives the PNo signal. The PNI and PNo signals are respectively exclusive-OR'ed with the output of exclusive-OR gate 234 and respectively provided as inputs to Finite Impulse Response (FIR) filters 242 and 244. The filtered signals output from FIR filters 242 and 65 encoded with code symbol repetition according to the 244 are provided to a transmit power control circuitry comprised of gain control elements 246 and 248. The signals provided to gain control elements 246 and 248 are gain controlled in response to input signals (not shown) from the control processor. The signals output from gain control elements are provided to transmit power amplifier circuitry 58. The data of each voice channel is also encoded with repetition, interleaved, scrambled, multiplied by its assigned Walsh sequence (WrWj), and then multiplied by the PN₁ and PN₀ sequences. The Walsh sequence to be used by a particular channel is assigned by the system controller at call setup time in the same manner as channels are assigned to calls in the analog FM cellular system. In the exemplary embodiment illustrated herein, up to 61 different Walsh sequences are available for use by the voice channels. In the exemplary embodiment of the present invention, the voice channel utilizes a variable data rate. The intent in using a variable data rate is to lower the data rate when there is no voice activity thereby reducing interference generated by this particular voice channel to other users. The vocoder envisioned to provide variable rate data is disclosed in copending U.S. patent application "VARIABLE RATE VOCODER" Ser. No. 07/713,661, filed June 11, 1991, also assigned to the assignee of the present invention. Such a vocoder produces data at four different data rates based on voice activity on a 20 msec frame basis. Exemplary data rates are 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps. Although the data rate will vary on a 20 msec basis, the code symbol rate is kept constant by code repetition at 19.2 ksps. Accordingly, the code symbols are repeated 2, 4 and 8 times for the respective data rates 4.8 kbps, 2.4 kbps and 1.2 kbps. Since the variable rate scheme is devised to reduce interference, the code symbols at the lower rates will have lower energy. For example, for the exemplary data rates of 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps, the code symbol energy (E_s) is respectively $E_b/2$, $E_b/4$, Eb/8 and Eb/16 where Eb is the information bit energy for the 9.6 kbps transmission rate. The code symbols are interleaved by a convolutional interleaver such that code symbols with different energy levels will be scrambled by the operation of the interleaver. In order to keep track of what energy level a code symbol should have a label is attached to each symbol specifying its data rate for scaling purposes. After orthogonal Walsh covering and PN spreading. the quadrature channels are digitally filtered by a Finite Impulse Response (FIR) filter. The FIR filter will receive a signal corresponding to the symbol energy level data rate. The I and Q channels will be scaled by factors of: 1, $1/\sqrt{2}$, 1, or $1/\sqrt{2}$. In one implementation the vocoder would provide a data rate label in the form of a 2-bit number to the FIR filter for controlling the filter scaling coefficient. In FIG. 4, the circuitry of two exemplary voice channels, voice channels (i) and (j) are illustrated. The voice channel (i) data is input from an associated vocoder (not shown) to transmit modulator 54 (FIG. 3). Transmit modulator 54 is comprised of excoder 250; interleaver 251, exclusive-OR gates 252, 255, 256, and 258, PN generator 253, and Walsh generator (Wi) 254, The voice channel (i) data is input to encoder 250; where in the exemplary embodiment it is convolutional input data rate. The encoded data is then provided to interleaver 251, where, in the exemplary embodiment, it is convolutional interleaved. Interleaver 251, also re- ceives from the vocoder associated with the voice channel (i) a 2-bit data rate label that is interleaved with the symbol data to identify at the data rate to the FIR filters. The data rate label is not transmitted. At the mobile unit, the decoder checks for all possible codes. The 5 interleaved symbol data is output from interleaver 251, at an exemplary rate of 19.2 ksps to an input of exclusive-OR gate 252, 23 In the exemplary embodiment, each voice channel signal is scrambled to provide greater security in cell-to- 10 mobile transmissions. Although such scrambling is not required it does enhance the security in communications. For example, scrambling of the voice channel signals may be accomplished by PN coding the voice bile unit address of user ID. Such scrambling may use the PNu sequence or encryption scheme as discussed with reference to FIG. 3 with respect to the particular receiver for the mobile-to-cell communications. Accordingly, a separate PN generator may be imple- 20 mented for this function as illustrated in FIG. 4. Although scrambling is discussed with reference to a PN sequence, scrambling may be accomplished by other techniques including those well known in the art. Referring again to FIG. 4, scrambling of the voice 25 channel (i) signal may be accomplished by providing PN generator 253, which receives the assigned mobile unit address from the control processor. PN generator 253, generates a unique PN code that is provided as the other input to exclusive-OR gate 252. The output of 30 exclusive-OR gate 252, is instead provided to the one input of exclusive-OR gate 255, Walsh generator (Wi) 254; generates, in response to a function select signal and timing signals from the control processor, a signal corresponding to a preassigned 35 the Walsh sequences as a desired "carrier" signal. Any Walsh sequence. The value of the function select signal may be determined by the address of the mobile unit. The Walsh sequence signal is provided as the other input to exclusive-OR gate 255. The scrambled symbol sive-OR gate 255, with the result provided as an input to both of exclusive-OR gates 256; and 258;. PN generator 253; along with all other PN generators and Walsh generators at the cell-site provide an output at 1.2288 MHz. It should be noted that PN generator 253 includes 45 a decimator which provides an output at a 19.2 kHz rate to exclusive-OR gate 255, The other input of exclusive-OR gate 256, receives the PN_i signal while the other input of exclusive-OR gate 25% receives the PNo signal. The PN1 and PNo 50 signals are respectively exclusive-OR'ed with the output of exclusive-OR gate 252, and respectively provided as inputs to Finite Impulse Response (FIR) filters 260; and 262. The input symbols are filtered according to the input data rate label (not shown) from convolutional 55 of digital to saalog (D/A) converters for converting the interleaver 251; The filtered signals output from FIR filters 260; and 262; provided to a portion of transmit power control circuitry 56 comprised of gain control elements 264; and 266;. The signals provided to gain control elements 264, and 266, are gain controlled in 60 response to input signals (not shown) from the control processor. The signals output from gain control elements are provided to transmit power amplifier circuitry:58. In addition to voice bits, the forward link voice chan- 65 nel carries power control information. The power control bit rate is in the exemplary embodiment 800 bps. The cell-site receiver which is demodulating the mo- bile-to-cell signal from a given mobile, generates the power control information which is interted in the cellto-mobile voice channel addressed to that particular mobile. Further details on the power control feature is disclosed in the above identified copending application. 24 Power control bits are inserted at the output of the convolutional interleaver by means of a technique called code symbol puncturing. In other words, whenever a power control bit needs to be transmitted two code symbols are replaced by two identical code symbals with polarity given by the power control information. Moreover, power control bits are transmitted at the energy level corresponding to the 9600 bps bit rate. An additional constraint imposed on the power conchannel signals with a PN code determined by the mo- 15 trol information stream is that the position of the bits must be randomized among mobile-to-cell channels. Otherwise the full energy power control bits would generate spikes of interference at regular intervals, thus diminishing the
detectability of such bits. FIG. 4 further illustrates voice channel (j) which is identical in function and structure to that of voice channel (i). It is contemplated that there exist many more voice channels (not illustrated) with the total of voice channel being up to 61 for the illustrated embodiment. With respect to the Walsh generators of FIG. 4, Walsh functions are a set of orthogonal binary sequences that can be easily generated by means well known in the art. The characteristic of interest in the Walsh function is that each of the 64 sequences is perfectly orthogonal to all of the other sequences. As such, any pair of sequences differ in exactly as many bit positions as they agree, i.e. 32 over an interval of 64 symbols. Thus when information is encoded for transmission by the Walsh sequences the receiver will be able to select any one of signal energy encoded onto the other Walsh sequences will be rejected and not result in mutual interference to the desired one Walsh sequence. In the exemplary embodiment for the cell-to-mobile data and Walsh sequence are exclusive-OR'ed by exclusive 40 link, the sync, paging and voice channels as mentioned previously use convolutional encoding of a constraint length K=9 and code rate $r=\frac{1}{2}$, that is, two encoded symbols are produced and transmitted for every information bit to be transmitted. In addition to the convolutional encoding, convolutional interleaving of symbol data is further employed. It is further envisioned that repetition is also utilized in conjunction with the convolutional encoding. At the mobile unit the optimum decoder for this type of code is the soft decision Viterbi algorithm decoder. A standard design can be used for decoding purposes. The resulting decoded information bits are passed to the mobile unit digital baseband equipment. > Referring again to FIG. 4, circuitry 50 includes series digital information from the PN; and PNo spread data for the pilot, sync, paging and voice chattlels to analog form. In particular the pilot channel PN/ spread data is output from gain control element 210 to D/A converter 268. The digitized data is output from D/A converter 268 to an summer 284. Similarly, the output of the corresponding gain control elements for the sync, paging and voice channels PN; spread data, i.e. gain control elements 228, 246, and 264-264, are respectively provided to D/A converters 272, 276 and 2001-200/ where the signals are digitized and provided to summer 284. The PNQ spread data for the pilot, sync, paging and voice channels are output from gain control elements 221. 230, 248, and 266i-266j, are respectively provided to D/A converters 270, 274, 278 and 282i-282j where the signals are digitized and provided to summer 286. Summer 284 sums the PN/spread data for the pilot. sync, paging and voice channels and while summer 286 5 sums the and PNo spread data for the same channels. The summed I and Q channel data is respectively input along with local oscillator (LO) frequency signals Sin $(2\pi ft)$ and Cos $(2\pi ft)$ to mixers 288 and 290 where they are mixed and provided to summer 292. The LO fre- 10 quency signals Sin $(2\pi ft)$ and Cos $(2\pi ft)$ are provided from suitable frequency sources (not shown). These mixed IF signals are summed in summer 292 and provided to mixer 294. Mixer 294 mixes the summed signal with an RF fre- 15 quency signal provided by frequency synthesizer 296 so as to provide frequency upconversion to the RF frequency band. The RF signal output from mixer 294 is bandpass filtered by bandpass filter 298 and output to RF amplifier 299. Amplifier 299 amplifies the band 20 limited signal in accordance with the input gain control signal from the transmit power control circuitry 56 (FIG. 3). It should be understood that the embodiment illustrated for transmit power amplifier circuitry 58 is in signal summing, mixing, filtering and amplification possible as is well known in the art. Cell-site control processor 48 (FIG. 3) has the responsibility for assignment of digital data receivers and sor 48 also monitors the progress of the call, quality of the signals and initiates teardown on loss of signal. The cell-site communicates with the MTSO via link 52 where it is coupled by a standard telephone wire, optical fiber, or microwave link. FIG. 8 illustrates in block diagram form the equipment utilized in the MTSO. The MTSO typically includes a system controller or control processor 300, digital switch 302, diversity combiner 304, digital vocoder 306 and digital switch 306. Although not illus- 40 trated additional diversity combiners and digital vocoders are coupled between digital switches 302 and 308. When the cell-diversity mode is active, the call is processed by two cell-sites. Accordingly, signals will arrive at the MTSO from more than one cell-site with 45 trolled by the searcher receiver and the control procesnominally the same information. However, because of fading and interference on the inbound or reverse link from the mobile unit to the cell-sites, the signal from one cell-site may be of better quality than the signal from the other cell-site. Digital switch 302 is used in routing the information stream corresponding to a given mobile unit from one or more cell-sites to diversity combiner 304 or the corresponding diversity combiner as determined by a signal from system control processor 300. When the sys- 55 msec. tem is not in the cell diversity mode, diversity combiner 304 may be either bypassed or fed the same information on each input port. A multiplicity of serial coupled diversity combiners and vocoder are provided in parallel, nominally one for 60 the assignment of Walsh sequences used at the cell-site each call to be processed. Diversity combiner 304 compares the signal quality indicators accompanying the information bits from the two or more cell-site signals. Diversity combiner 304 selects the bits corresponding to the highest quality cell-site on a frame-by-frame basis 65 of the information for output to vocoder 306. Vocoder 306 converts the format of the digitized voice signal to standard 64 Kbps PCM telephone for- mat, analog, or any other standard format. The resultant signals is transmitted from vocoder 306 to digital switch 308. Under the control of system control processor 300, the call is routed to the PSTN. Voice signals coming from the PSTN intended for the mobile units, are provided to digital switch 308 for coupling to an appropriate digital vocoder such as vocoder 306 under control of system control processor 300. Vocoder 306 encodes the input digitized voice signals and provides the resulting information bit stream directly to digital switch 302. Digital switch 302 under system control processor control direct the encoded data to the cell-site or cell-sites to which the mobile unit is communicating. Although discussed previously that information transmitted to the MTSO analog voice, it is further envisioned that digital information may also be communicated in the system. To ensure compatibility with the system, care must be taken in proper framing of If the mobile unit is in a handoff mode communicating to multiple cell-sites or in a cell diversity mode, digital switch 302 routes the calls to the appropriate cell-sites for transmission by the appropriate cell-site transmitter to the intended recipient mobile unit. Howmerely for purposes of illustration with many variations 25 ever, if the mobile unit is communicating with only a single cell-site or not in a cell diversity mode, the signal is directed only to a single cell-site. System control processor 300 provides control over digital switches 302 and 306 for routing data to and transmit modulators to a particular call. Control process 30 from the MTSO. System control processor 300 also determines the assignment of calls to the cell-sites and to the vocoders at the MTSO. Furthermore, system control processor 300 communicates with each cell-site control processor about the assignment of particular 35 calls between the MTSO and cell-site, and the assignment of PN codes for the calls. It should be further understood that as illustrated in FIG. 8 digital switches 302 and 306 are illustrated as two separate switches, however, this function may be performed by a single physical switching unit. When the cell-diversity mode is in use, the mobile unit will use the searcher receiver to identify and acquire the strongest multipath signal from each of the two cell-sites. The digital data receivers will be consor so as to demodulate the strongest signals. When the number of receivers is less than the number of cell-sites transmitting information in parallel, a switching diversity capability is possible. For example, with only a 50 single data receiver and with two cell-sites transmitting, the searcher will monitor the pilots from both cell-sites and choose the strongest signal for the receiver to demodulate. In this embodiment the choice can be made as frequently as every vocoder frame, or about every 20 The system control processor has responsibility for assignment of digital data receivers and modulators at the cell-site to handle particular calls. Thus in the cellto-mobile link, the system control processor controls in transmission of a particular call to the mobile unit. In addition the system control processor controls the receiver Walsh sequences and PN codes. In the mobile-tocell link, the system control processor also controls the mobile unit user PN codes for the call. Assignment information is therefore transmitted from the MTSO to the cell-site and from there to the cell to the mobile. The system control processor also monitors the progress of the call, the quality of signals, and initiates tear down on loss of signal. #### MOBILE TO CELL LINK In the mobile-to-cell link, the channel characteristics 5 dictate that the modulation technique be modified. In particular, the use of a pilot carrier as is used in the cell-to-mobile
link is no longer feasible. The pilot carrier must be more powerful than a voice carrier in order to provide a good phase reference for data modulation. 10 With the cell-site transmitting many simultaneous voice carriers, a single pilot signal can be shared by all the voice carriers. Therefore, the pilot signal power per voice carrier is quite small. In the mobile-to-cell link, however, there is usually 15 only a single voice carrier per mobile. If a pilot were used, it would require significantly more power than the voice carrier. This situation is clearly not desirable since overall system capacity would be greatly reduced due to the interference caused by the presence of a 20 larger number of high power pilot signals. Therefore, a modulation capable of efficient demodulation without a pilot signal must be used. With the mobile-to-cell channel corrupted by Rayleigh fading, resulting in a rapidly varying channel 25 phase, coherent demodulator techniques, such as a Costas loop which derives phase from the received signal, are not feasible. Other techniques such as differentially coherent PSK can be employed but fail to provide the desired level of signal-to-noise ratio performance. Thus, a form of orthogonal signaling such as binary, quaternary or m-ary signalling should be employed. In the exemplary embodiment, a 64-ary orthogonal signaling technique is employed using Walsh functions. The demodulator for m-ary orthogonal signaling requires 35 channel coherence only over the duration of transmission of the m-ary symbol. In the exemplary embodiment, this is only two bit times. The message encoding and modulation process begins with a convolutional encoder of constraint length 40 K=9 and code rate r=\frac{1}{2}. At a nominal data rate of 9600 bits per second, the encoder produces 28800 binary symbols per second. These are grouped into characters containing 6 symbols each at a rate of 4800 characters per second with there being 64 possible characters. 45 Each character is encoded into a length 64 Walsh sequence containing 64 binary bits or "chips." The 64-ary Walsh chip rate is 307,200 chips per second in the exemplary embodiment. The Walsh chips are then "covered" or multiplied by 50 a PN sequence running at the rate of 1.2288 MHz. Each mobile unit is assigned a unique PN sequence for this purpose. This PN sequence can either be assigned only for the duration of the call or assigned permanently to the mobile unit. The assigned PN sequence is referred to 55 herein as the user PN sequence. The user PN sequence generator runs at a clock rate of 1.2288 MHz and so as to produce four PN chips for every Walsh chip. Finally, a pair of short, length 32768, PN sequences are generated. In the exemplary embodiment, the same 60 sequences are used as for the cell-to-mobile link. The user PN sequence covered Walsh chip sequence is then covered or multiplied by each of the two short PN sequences. The two resulting sequences then bi-phase modulate a quadrature pair of sinusoids and are summed 65 into a single signal. The resulting signal is then bandpass filtered, translated to the final RF frequency, amplified, filtered and radiated by the antenna of the mobile unit. As was discussed with reference to the cell-to-mobile signal, the endering of the filtering, amplification, translation and modulation operations may be interchanged. In an alternative embodiment, two different phases of the user PN code might be produced and used to modulate the two carrier phases of the quadraphase waveform, dispensing with the need for using the length 32768 sequences. In yet another alternative, the mobileto-cell link might utilize only bi-phase modulation, also dispensing with the need for the short sequences. The cell-site receiver for each signal produces the short PN sequences and the user PN sequence for each active mobile signal being received. The receiver correlates the received signal energy with each of the coded waveforms in separate correlators. Each of the correlator outputs is then separately processed to demodulate the 64-ary encoding and the convolutional coding using a Fast Hadamard Transform processor and a Viterbi algorithm decoder. In another alternative modulation scheme for the mobile-to-cell link, the same modulation acheme would be used as for the cell-to-mobile link. Each mobile would utilize the pair of 32768 length sector codes as outer codes. The inner code would utilize a length 64 Walsh sequence that is assigned to the mobile for use while it is in that sector. Nominally, the same Walsh sequence would be assigned to the mobile for the mobile-to-cell link as is used for the cell-to-mobile link. The above orthogonal PN coding scheme limits the 30 available bandwidth spreading that can be used by the modulation system to a maximum rate of the chip rate divided by 64, or 19200 Hz for the numbers used in the exemplary embodiment. This would preclude the use of m-ary encoding with large m as described for the exemplary embodiment. As an alternative, however, a rate r=4, constraint length K=9 convolutional code could be used with differential binary phase shift keying modulation of the encoded binary symbols. The demodulator in the cell-site could build up a phase reference over a short interval using the technique described in the article "Nonlinear Estimation of PSK-Medulated Carrier with Application to Burst Digital Transmission". Andrew J. Viterbi and Audrey M. Viterbi, IEEE Transactions On Information Theory, Vol IT-29, No 4. July 1983. For example, a phase reference could be averaged over only 4 symbols requiring no more channel coherence than the above 64-ary scheme. The performance of the just described alternative scheme, however, will be inferior to the preferred embodiment in the presence of severe Rayleigh fading and multipath conditions. However, in certain environments where fading and multipath are less severe, for example, the satellite-mobile channel and in certain land-mobile channels, the performance of the alternative system could be better than the preferred embodiment. This can occur because the gain from making the mobile signals orthogonal to each other may exceed the loss in detection efficiency of the DPSK scheme. In order to satisfy the requirement for time alignment in orthogonal Walsh functions for the alternative mobile-to-cell link, each cell receiver determines the time error from nominal timing of each received signal. If a given received signal lags in timing, then the associated cell modulator and transmitter will transmit a small increment. Conversely, if the received signal timing of a mobile leads the nominal timing, a command to retard by a small increment is transmitted to the mobile. The timing adjustment increments are made on the order of PN chip or 101.7 nanoseconds. The commands are transmitted at a relatively low rate, on the order of 10 to 50 Hz and consist of a single bit inserted into the digital voice data flow. During a soft handoff operation, the mobile unit will 5 be receiving signals from two or more cells. Because the mobile unit can only align its timing in response to one of cells' timing adjust commands, the mobile unit will normally move its timing in response to the commands received from the strongest cell being received. The 10 mobile unit transmitted signal will thus be in time alignment with the cell with which it has the best path. Otherwise greater mutual interference to other users will result. If each cell receiver receiving a mobile signal per- 15 forms the above time error measurement and correction transmission operation, then all the mobiles' received signals will normally be received with approximately the same timing, resulting in reduced interference. FIG. 9 illustrates in block diagram form an exemplary 20 mobile unit CDMA telephone set. The mobile unit CDMA telephone set includes an antenna 430 which is coupled through diplexer 432 to analog receiver 344 and transmit power amplifier 436. Antenna 430 and diplexer 432 are of standard design and permit simulta- 25 neous transmission and reception through a single antenna. Antenna 430 collects transmitted signals and provides them through diplexer 432 to analog receiver 434. Receiver 434 receives the RF frequency signals from diplexer 432 which are typically in the 850 MHz 30 frequency band for amplification and frequency downconversion to an IF frequency. This translation process is accomplished using a frequency synthesizer of standard design which permits the receiver to be tuned to any of the frequencies within the receive frequency 35 band of the overall cellular telephone frequency band. The signals are also filtered and digitized for providing to digital data receivers 540 and 542 along with searcher receiver 544. The details of receiver 434 are further illustrated in 40 FIG. 10. Received signals from antenna 430 are provided to downconverter 500 which is comprised of RF amplifier 502 and mixer 504. The received signals are provided as an input to RF amplifier 502 where they are amplified and output as an input to mixer 504. Mixer 504 45 is provided with another input, that being the signal output from frequency synthesizer 506. The amplified RF signals are translated in mixer 504 to an IF frequency by mixing with the frequency synthesizer output signal. The IF signals are output from mixer 504 to bandpass filter (BPF) 508, typically a Surface Acoustic Wave (SAW) filter having a passband of approximately 1.25 MHz, where they are from bandpass filtered. The characteristics of the SAW filter are chosen to match the 55 waveform of the signal transmitted by the cell-site. The cell-site transmitted signal is a direct sequence spread spectrum signal that is modulated by a PN sequence clocked at a predetermined rate, which in the exemplary embodiment is 1.2288 MHz. This clock rate is 60 signal to control processor 446 indicative of the stronchosen to be an integer multiple of the baseband data rate
of 9.6 kbps. The filtered signals are output from BPF 508 as an input to a variable gain IF amplifier 510 where the signals are again amplified. The amplified IF signals are 65 output from IF amplifier 510 to analog to digital (A/D) converter 512 where the signals are digitized. The conversion of the IF signal to a digital signal occurs at a 9.8304 MHz clock rate in the exemplary embodiment which is exactly eight times the PN chip rate. Although (A/D) converter \$12 is illustrated as part of receiver 534, it could instead be a part of the data and searcher receivers. The digitized IF signals are are output from (A/D) converter 512 to data receivers 440 and 442, and searcher receiver 444. Receiver 434 also performs a power control function for adjusting the transmit power of the mobile unit. An automatic gain control (AGC) circuit 514 is also coupled to the output of IF amplifier \$10. In response to the level of the amplified IF signal, AGC circuit 514 provides a feedback signal to the gain control input of IF amplifier 510. Receiver 434 also uses AGC circuit 514 to generate an analog power control signal that is provided to transmit power control circuitry 438. In FIG. 9, the digitized signal output from receiver 434 is provided to digital data receivers 440 and 442 and to searcher receiver 444. It should be understood that an inexpensive, low performance mobile unit might have only a single data receiver while higher performance units may have two or more to allow diversity The digitized IF signal may contain the signals of many on-going calls together with the pilot carriers transmitted by the current cell-site and all neighboring cell-sites. The function of the receivers 440 and 442 are to correlate the IF samples with the proper PN sequence. This correlation process provides a property that is well-known in the art as "processing gain" which enhances the signal-to-interference ratio of a signal matching the proper PN sequence while not enhancing other signals. Correlation output is then synchronously detected using the pilot carrier from the closest cell-site as a carrier phase reference. The result of this detection process is a sequence of encoded data symbols. A property of the PN sequence as used in the present invention is that discrimination is provided against multipath signals. When the signal arrives at the mobile receiver after passing through more than one path, there will be a difference in the reception time of the signal. This reception time difference corresponds to the difference in distance divided by the velocity of propagation. If this time difference exceeds one microsecond, then the correlation process will discriminate between the paths. The receiver can choose whether to track and receive the earlier or later path. If two receivers are provided, such as receivers 440 and 442, then two independent paths can be tracked and processed in 50 parailel. Searcher receiver 444, under control of control processor 446 is for continuously scanning the time domain around the nominal time of a received pilot signal of the cell-site for other multi-path pilot signals from the same cell-site and for other cell-site transmitted pilot signals. Receiver 444 will measure the strength of any reception of a desired waveform at times other than the nominal time. Receiver 444 compares signal strength in the received signals. Receiver 444 provides a signal strength gest signals. Processor 446 provides control signals to data receivers 440 and 442 for each to process a different one of the strongest signals. On occasion another cell-site transmitted pilot signal is of greater signal strength than the current cell-site signal strength. Control processor 446 then would generate a control message for transmission to the system controller via the current cell-site requesting a transfer of the cell to the cell-site corresponding to the strongest pilot signal. Receivers 440 and 442 may therefore handle calls through two different cell-sites. During a soft handoff operation, the mobile unit will be receiving signals from two or more cells. Because the 5 mobile unit can only align its timing in response to one of cells' timing adjust commands, the mobile unit will normally move its timing in response to the commands received from the strongest cell being received. The mobile unit transmitted signal will thus be in time align- 10 combiner. The resulting combined signal stream is then ment with the cell with which it has the best path. Otherwise greater mutual interference to other users will Further details of an exemplary receiver, such as data receiver 440 is illustrated in further detail in FIG. 10. 15 ety of different vocoder designs. Data receiver 440 includes PN generators 516 and 518 which generate the PN/and PNo sequences in a manner and corresponding to those generated by the cell-site. Timing and sequence control signals are provided to PN generators \$16 and \$18 from control processor 446. 20 serves as an interface with a handset or any other type Data receiver 440 also includes Walsh generator 520 which provides the appropriate Walsh function for communication with this mobile unit by the cell-site. Walsh generator 520 generates, in response to timing signals (not shown) and a function select signal from the 25 thereto from circuitry 448. control processor, a signal corresponding to an assigned Walsh sequence. The function select signal transmitted to the mobile unit by the cell-site as part of the call set up message. The PN₁ and PN₂ sequences output from PN generators 516 and 518 are respectively input to 30 exclusive-OR gates 522 and 524. Walsh generator 520 provides its output to both of exclusive-OR gates 522 and 524 where the signals are exclusive-OR'ed and output the sequences PN/ and PNo. ceiver 440 where they are input to PN OPSK correlator 526. PN correlator 526 may be constructed in a manner similar to the PN correlator of the cell-site digital receivers. PN correlator 526 correlates the received I and provides correlated I and Q channel data output to corresponding accumulators 528 and 530. Accumulators 528 and 530 accumulate the input information over a period of one symbol or 64 chips. The accumulator receives a pilot phase signal from control processor 446. The phase of the received symbol data is rotated in accordance with the phase of the pilot signal as determined by the searcher receiver and the control procesdata which is provided to the deinterleaver and decoder circuitry. Control processor 446 also includes PN generator 534 which generates the user PN sequence in response to an input mobile unit address or user ID. The PN 55 sequence output from PN generator 534 is provided to diversity combiner and decoder circuitry. Since the cell-to-mobile signal is scrambled with the mobile user address PN sequence, the output from PN generator 534 is used in descrambling the cell-site transmitted 60 transmission. In response to this command, control signal intended for this mobile user similar to that as in the cell-site receiver. PN generator 534 specifically provides the output PN sequence to the deinterleaver and decoder circuity where it is used to descramble the scrambled user data. Although scrambling is discussed 65 to power control is further described in the above-menwith reference to a PN sequence, it is envisioned that other scrambling techniques including those well known in the art may be utilized. The outputs of receivers 440 and 442 are thus provided to diversity combiner and decoder circuitry 448. The diversity combiner circuitry contained within circuitry 448 simply adjusts the timing of the two streams of received symbols into alignment and adds them together. This addition process may be proceeded by multiplying the two streams by a number corresponding to the relative signal strengths of the two streams. This operation can be considered a maximal ratio diversity decoded using a forward error detection (FEC) decoder also contained within circuitry 448. The usual digital baseband equipment is a digital vocoder system. The CDMA system is designed to accommodate a vari- Baseband circuitry 450 typically includes a digital vocoder (not shown) which may be a variable rate type as disclosed in the previously mentioned copending patent application. Baseband circuitry 450 further of peripheral device. Baseband circuitry 450 accommodates a variety of different vocoder designs. Baseband circuitry 450 provides output information signals to the user in accordance with the information provided In the mobile-to-cell link, user analog voice signals are typically provided through a handset as an input to baseband circuitry 450. Baseband circuitry 450 includes an analog to digital (A/D) converter (not shown) which converts the analog signal to digital form. The digital signal is provided to the digital vocoder where it is encoded. The vocoder output is provided to a forward error correction (FEC) encoding circuit (not shown) for error correction. In the exemplary embodi-The sequences PN' and PNO are provided to re- 35 ment the error correction encoding implemented is of a convolutional encoding scheme. The digitized encoded signal is output from baseband circuitry 450 to transmit modulator 452. Transmit modulator 452 first Walsh encodes the Q channel data with the PN' and PNe' sequences and 40 transmit data and then modulates the encoded signal on a PN carrier signal whose PN sequence is chosen according to the assigned address function for the call. The PN sequence is determined by control processor 446 from call setup information that is transmitted by outputs are provided to phase rotator 532 which also 45 the cell-site and decoded by receivers 440 and 442 and control processor 446. In the alternative, control processor 446 may determine the PN sequence through prearrangement with the cell-site. Control processor 446 provides the PN sequence information to transmit sor. The output from
phase rotator 532 is the I channel 50 modulator 452 and to receivers 440 and 442 for call decoding. The output of transmit modulator 452 is provided to transmit power control circuitry 438. Signal transmission power is controlled by the analog power control signal provided from receiver 434. Control bits transmitted by the cell-sites in the form power adjustment command are precessed by data receivers 440 and 442. The power adjustment command is used by control processor 446 in setting the power level in mobile unit processor 446 generates a digital power control signal that is provided to circuitry 438. Further information on the relationship of receivers 440 and 442, control processor 446 and transmit power control 436 with respect tioned copending patent application. Transmit power control circuitry 438 outputs the power controlled modulated signal to transmit power amplifier circuitry 436. Circuitry 436 amplifies and converts the IF signal to an RF frequency by mixing with a frequency synthesizer output signal which tunes the signal to the proper output frequency. Circuitry 436 includes an amplifier which amplifies the power to a final output level. The intended transmission signal is output from circuitry 436 to diplexer 432. Diplexer 432 couples the signal to antenna 340 for transmission to the cell-sites. Control processor 446 also is capable of generating 10 control messages such as cell-diversity mode requests and cell-site communication termination commands. These commands are provided to transmit modulator 452 for transmission. Control processor 446 is responsive to the data received from data receivers 440 and 15 442, and search receiver 444 for making decisions relative to handoff and diversity combining. With respect to transmission by the mobile unit, the mobile user analog voice signal is first passed through a quence, convolutional forward error correction (FEC) encoded, 64-ary orthogonal sequence encoded and modulated on a PN carrier signal. The 64-ary orthogonal sequence is generated by a Walsh function encoder. The encoder is controlled by collecting six successive 25 binary symbol outputs from the convolutional FEC encoder. The six binary collectively determine which of the 64 possible Walsh sequences will be transmitted. The Walsh sequence is 64 bits long. Thus, the Walsh "chip" rate must be 9600 * 3 * (1/6) * 64 = 307200 Hz 30 9). for a 9600 bps data transmission rate. In the mobile-to-cell link, a common short PN sequence is used for all voice carriers in the system, while user address encoding is done using the user PN seassigned to the mobile for at least the duration of the call. The user PN sequence is exclusive-OR'ed with the common PN sequences, which are length 32768 augmented maximal-length linear shift register sequences. The resulting binary signals then each bi-phase modu- 40 late a quadrature carrier, are summed to form a composite signal, are bandpass filtered, and translated to an IF frequency output. In the exemplary embodiment, a portion of the filtering process is actually carried out by a finite impulse response (FIR) digital filter operating 45 on the binary sequence output. The modulator output is then power controlled by signals from the digital control processor and the analog receiver, converted to the RF frequency of operation by mixing with a frequency synthesizer which tunes the 50 signal to proper output frequency, and then amplified to the final output level. The transmit signal is then passed on to the diplexer and the antenna. FIG. 11 illustrates a preferred, but yet exemplary, embodiment of mobile unit transmit modulator 452. 55 Data is provided in digital form from the user digital baseband circuitry to encoder 600 where in the exemplary embodiment is convolutionally encoded. The output of encoder 600 is provided to interleaver 602 which in the exemplary embodiment is a block inter- 60 leaver. The interleaved symbols are output from block interleaver 602 to Walsh encoder 604 of transmit modulator 452. Walsh encoder 604 utilizes the input symbols to generate a code sequence output. The Waish sequence is provided to one input of exclusive-OR gate 65 Transmit modulator 452 further includes PN generator 606 which receives the mobile unit address as an input in determining the output PN sequence. PN generator 608 generates the user specific 42-bit sequence as was discussed with reference to FIGS. 3 and 4. A further attribute of PN generator 608 that is common to all user PN generators and not previously discussed is the use of a masking technique in generating the output user PN sequence. For example, a 42-bit mask is provided for that user with each bit of the 42-bit mask exclusive-OR'ed with a bit output from each register of the series of shift register that form the PN generator. The results of the mask and shift register bit exclusive-OR operation are then exclusive-OR'ed together to form the PN generator output that is used as the user PN sequence. The output PN sequence of PN generator 608, the sequence PN_U, is input to exclusive-OR gate 696. The Walsh symbol data and the PN usequence are exclusive-OR'ed in exclusive-OR gate 606 and provided as in input to both of exclusive-OR gates 610 and 612. Transmit modulator 452 further includes PN generadigital vocoder. The vocoder output is then, in se- 20 tors 614 and 616 which respectively generate PN, and PNo sequences. All mobile units use the same PN₁ and PNo sequences. These PN sequences are in the exemplary embodiment the zero-shift used in the cell-tomobile communications. The other input of exclusive-OR gates 610 and 612 are respectively provided with the PN₁ and PN₀ sequences output from PN generators 614 and 616. The sequences PN/and PNQ are exclusive-OR'ed in the respective exclusive-OR gates with the output provided to transmit power control 438 (FIG. In the exemplary embodiment, the mobile-to-cell link uses rate $r = \frac{1}{2}$ convolutional code with constraint length K=9. The generators for the code are $G_1=557$ (octal), $G_2=663$ (octal), and $G_3=711$ (octal). Similar to the quence generator. The user PN sequence is uniquely 35 cell-to-mobile link, code repetition is used to accommodate the four different data rates that the vocoder produces on a 20 msec frame basis. Unlike the cell-tomobile link, the repeated code symbols are not transmitted over the air at lower energy levels, rather only one code symbol of a repetition group is transmitted at the nominal power level. In conclusion, the code repetition in the exemplary embodiment is used merely as an expedient to fit the variable data rate scheme in the interleaving and modulation structure as it will be shown in the following paragraphs. A block interleaver spanning 20 msec, exactly one vocoder frame, is used in the mobile-to-cell link. The number of code symbols in 20 msec, assuming a data rate of 9600 bps and a code rate $r = \frac{1}{2}$, is 576. The N and B parameters, N is equal to the number of rows and B to the number of columns of the interleaver array are 32 and 18, respectively. The code symbols are written into the interleaver memory array by rows and read out by columns. The modulation format is 64-ary orthogonal signalling. In other words, interleaved code symbols are grouped into groups of six to select one out of 64 orthogonal waveforms. The 64 time orthogonal waveforms are the same Walsh functions used as cover sequences in the cell-to-mobile link. The data modulation time interval is equal to 208.33 usec, and is referred to as a Walsh symbol interval. At 9600 bps, 208.33 usec corresponds to 2 information bits and equivalently to 6 code symbols at a code symbol rate equal to 28,800 sps. The Walsh symbol interval is subdivided into 64 equal length time intervals, referred to as Walsh chips, each lasting 208.33/64=3.25 µsec. The Walsh chip rate is then 1/3.25 µsec=307.2 kHz. Since the PN spreading rate is symmetric in the two links, i.e. 1.2288 MHz, there are exactly 4 PN chips per Walsh chip. A total of three PN generators are used in the mobileto-cell link path. The user specific 42-bit PN generator 5 and the pair of 15-bit I and Q channel PN generators. Following the user specific spreading operation, the signal is OPSK spread as it was done in the cell-tomobile link. Unlike the cell-to-mobile link, where each sector or cell was identified by unique sequences of 10 radius. The users PN code for the access channel is length 215, here all mobile units use the same I and Q PN sequences. These PN sequences are the zero-shift sequences used in the cell-to-mobile link, also referred to as the pilot sequences. Code repetition and energy scaling are used in the 15 cell-to-mobile link to accommodate the variable rates produced by the vocoder. The mobile-to-cell link uses a different scheme based on a burst transmission. The vocoder produces four different data rates, i.e. 9600, 4800, 2400, and 1200 bps, on a 20 msec frame basis 20 and modulation of the access channel is exactly the as in the cell-to-mobile link. The information bits are encoded by the rate $r=\frac{1}{2}$ convolutional encoder and code symbols are repeated 2, 4, and 8 times at the three lower data rates. Thus, the code symbol rate is kept constant at 28,800 sps. Following the encoder, the code 25 Let Ne the number of preamble frames where k is the symbols are interleaved by the block interleaver which spans exactly one vocoder frame or 20 msec. A total of 576 code symbols are generated every 20 msec by the convolutional encoder, some of which might be repeated symbols. The code symbols sequence as it is transmitted is shown in FIG. 12. Notice that a vocoder frame, 20 msec, has been subdivided into 16 slots each lasting 1.25 msec. The numerology of the mobile-to-cell link is such sps rate or equivalently 6 Walsh symbols at the 4800 sps rate. At the 4 rate, i.e. 4800 bps, the slots are grouped into 8 groups each comprising 2 slots. At the \(\frac{1}{4}\) rate,
i.e. 2400 bps. the slots are grouped into 4 groups each comprising 4 slots, and finally at the 1 rate, i.e. 1200 bps, the 40 slots are grouped into 2 groups each comprising 8 slots. An exemplary symbol burst transmission pattern is further illustrated in FIG. 12. For example, at the \(\frac{1}{4}\) rate. i.e. 2400 bps, during the fourth slot of the first group the fourth and eighth row of the interleaver memory array 45 are read out by columns and sequentially transmitted. The slot position for the transmitted data must be randomized in order to reduce the interference. The mobile-to-cell link timing is illustrated in FIG. 13. FIG. 13 expands upon the timing diagram of FIG. 7 50 to include the mobile-to-cell channels, i.e. voice and access. The synchronization of the mobile-to-cell link comprises the following steps: - I. Decode successfully a sync message, i.e. CRC check: - 2. Load long PN shift register with state received in the sync message; and - Compensate for pilot code phase offset if receiving from a sector which uses a shifted pilot. tion, i.e. PN synchronization and real time synchronization, and can begin to transmit on either the access channel or voice channel. The mobile unit in order to originate a call must be provided with signaling attributes in order to complete 65 a call to another system user via a cell-site. In the mobile-to-cell link the envisioned access technique is the slotted ALOHA. An exemplary transmission bit rate on 36 the reverse channel is 4800 bps. An access channel packet comprises of a preamble followed by the infor- The preamble length is in the exemplary embodiment an integer multiple of 20 msec frames and is a sector/cell parameter which the mobile receives in one of the paging channel messages. Since the cell receivers use the preambles to resolve propagation delays this scheme allows the preamble length to vary based on the cell either preurranged or transmitted to the mobile units on the paging channel. The modulation is fixed and constant for the duration of the preamble. The orthogonal waveform used in the preamble is Wo, i.e. the all zero Walsh function. Notice that an all zero pattern at the input of the convolutional encoder generates the desired waveform Wo. An access channel data packet may consist of one or at most two 20 msec frames. The coding, interleaving, same as for a voice channel at the 9600 bps rate. In an exemplary embodiment, the sector/cell requires the mobile units to transmit a 40 msec preamble and the access channel message type requires one data frame. number of 20 msec elapsed from a predefined time origin. Then mobiles are allowed to initiate transmission on the access channel only when the equation: (k, $N_p+2)=0$ is true. With respect to other communications applications it may be desirable to rearrange the various elements of the error correction coding, the orthogonal sequence coding and the PN coding to better fit the application. For example, in satellite mobile communications that in each slot there are 36 code symbols at the 28,800 35 where the signals are relayed between large Hub earth stations and the mobile terminals by one or more earth orbiting satellites, it may be desirable to employ coherent modulation and demodulation techniques in both directions of the link because the channel is much more phase coherent than the terrestrial mobile channel. In such an application, the mobile modulator would not utilize m-ary encoding as described above. Instead. bi-phase or four-phase modulation of forward error correction symbols might be employed with conventional coherent demodulation with carrier phase extracted from the received signal using Costas loop techniques. In addition, the orthogonal Walsh function channelization such as herein described for the cell-tomobile link may be employed. As long as the channel phase remains reasonably coherent, this modulation and demodulation system provides operation with lower Eb/No then m-ary orthogonal signaling resulting in higher system capacity. In another embodiment, it may be preferable to en-55 code the speech waveform directly into the RF waveform instead of utilizing a vocader and FEC techniques. While the use of a vocoder and FEC techniques result in very high link performance, the complexity of implementation is high, resulting in additional cost and in At this point the mobile has complete synchroniza- 60 high power consumption. These disadvantages may be on, i.e. PN synchronization and real time synchroniza- especially unfavorable in a pocket portable telephone where bettery consumption and cost are important. In customary digital telephone transmission practice, the speech waveform is represented in a digital format as 8 bit speech samples at a sample rate of 8 kHz. The CDMA system could encode the 8 bit samples directly into carrier phase angles. This would eliminate the need for a vocoder or a FEC encoder/decoder. It would also require a somewhat higher signal-to-noise ratio for good performance, resulting in lower capacity. In another alternative, the 8 bit speech samples could be directly encoded into carrier amplitudes. In yet another alternative, the speech waveform samples could be 5 encoded into carrier phases and amplitudes. The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent 10 to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the emest scope consistent with the principles and novel features disclosed herein. We claim: - 1. A system for modulating an information signal in a spread spectrum communication system, comprising: means for generating an orthogonal function signal representative of an orthogonal function selected from a plurality of orthogonal functions: - means for generating a pseudorandom noise (PN) signal of a predetermined PN code: - means for combining said orthogonal function signal. said PN signal and an information signal, and for providing a resultant first modulation signal. - 2. The system of claim 1 wherein said plurality of orthogonal functions are Walsh functions. - 3. The system of claim 1 wherein said PN signal is an augmented length maximal-length linear sequence PN code. - 4. A spread spectrum modulator for modulating a digital user information signal for transmission to an 35 intended recipient user, comprising: - orthogonal function generator means for generating a preselected Walsh function signal; - first combiner means for, receiving and combining said user information signal and said Walsh func- 40 tion signal, and providing a resultant intermediate modulation signal; - pseudorandom noise (PN) generator means for generating first and second PN signals of a code sequence different from one another; and - second combiner means for, receiving and combining said intermediate modulation signal respectively with said first and second PN signals, and providing resultant first and second output modulation signals. - 5. The modulator of claim 4 further comprising encoder means for receiving and error correction encoding said user information signal, and providing an error correction encoded user information signal to said first combiner means for combination with said Walsh func- 55 tion signal. - 6. The modulator of claim 5 further comprising interleaver means for receiving and interleaving said error correction encoded user information signal, and providing said interleaved error correction encoded user infor- 60 mation signal to said first combiner means for combining with said Walsh function signal. - 7. The modulator of claim 6 further comprising transmission means for modulating said first and second output modulation signals upon a carrier signal and 65 transmitting said modulated carrier signal. - 8. The modulator of claim 7 wherein said transmission means comprises: - signal conversion means for receiving and converting said first and second output modulation signals to analog form; - carrier modulation means for, receiving and modulating first and second carrier signals respectively with said analog first and second output modulation signals, and combining said modulated first and second carrier signals as a transmission signal: - frequency conversion means for receiving and converting said transmission signal to a higher frequency; and - antenna means for radiating said frequency converted transmission signal. - 9. The modulator of claim 4 further comprising data bodiments shown herein but is to be accorded the wid- 15 scrambler means for generating a scrambling signal unique to said intended recipient user, and said first combining means further for receiving and combining said scrambling signal with said user information signal and said Walsh function signal. - 10. The modulator of claim 9 wherein said data scrambler means comprises user PN generator means for generating as said scrambling signal a user PN code sequence unique to said intended recipient user. - 11. The modulator of claim 4 wherein said digital user 25 information signal is comprised of frames of variable rate vocoded voice data. - 12. A code division multiple access (CDMA) transmission system for spread spectrum modulation and transmission of a plurality of input digital user informa-30 tion signals each intended for a respective recipient user, said transmission system comprising: - spreading means for generating first and second spectrum spreading signals; - pilot channel means for, generating a pilot channel orthogonal function signal representative of a first orthogonal function selected from a set of orthogonal functions, combining said first and second spectrum spreading signals with said pilot channel orthogonal function signal, and
providing as an output first and second pilot channel output signals; - a plurality of user channel means each for, receiving a respective one of a plurality of user information signals, generating a user channel orthogonal function signal representative of a selected one of said orthogonal functions of said set of orthogonal functions wherein each user channel orthogonal function signal is of a different orthogonal function with respect to each other user channel orthogonal function signal and said pilot channel orthogonal function signal, combining said received user information signal with said generated user channel orthogonal function signal so as to provide a resultant user channel orthogonalized information signal, combining each resultant user channel orthogonalized information signal with said first and second spectrum spreading signals, and providing as an output from each respective user channel means corresponding first and second user channel output signals; - transmission means for, receiving and converting said first and second pilot channel output signals to analog form, receiving and converting each user channel means first and second user channel output signals to analog form, combining said analog first pilot channel output signal and each analog first user channel output signal to provide a first combined signal, combining said analog second pilot channel output signal and each analog second user channel output signal to provide a second combined signal, combining said first combined signal with a first carrier signal so as to provide a first modulated carrier signal, combining said second combined signal with a second carrier signal so as to provide a second modulated carrier signal, combining said first and second modulated carrier signals as a composite modulated carrier signal, and transmitting said composite modulated carrier signal. 13. The transmission system of claim 12 further comprising at least one auxiliary channel means each for, receiving a respective auxiliary channel information signal, generating an auxiliary channel orthogonal function signal representative of a selected one of said or- 15 thogonal functions of said set of orthogonal functions wherein each auxiliary channel orthogonal function signal is of a different orthogonal function with respect to each other auxiliary channel orthogonal function signal, each user channel orthogonal function signal and 20 said pilot channel orthogonal function signal, combining said received auxiliary channel information signal with said generated auxiliary channel orthogonal function signal so as to provide a resultant auxiliary channel orthogonalized information signal, combining each auxiliary channel orthogonalized information signal with said first and second spectrum spreading signals, and providing as an output from each respective auxiliary channel means first and second auxiliary channel output 30 signals to said transmission means; and said for transmission means further for, receiving and converting each auxiliary channel means first and second auxiliary channel output signals to analog form, combining each analog first auxiliary channel output signal with said analog first pilot channel output signal and each analog first user channel output signal in said first combined signal, combining each analog second auxiliary channel output signal with said analog second pilot channel output signal and each second user channel output signal in said second combined signal 14. The modulator of claim 13 wherein each user channel means is further for forward error correction encoding and interleaving data bits of said user information signal. 15. The modulator of claim 14 wherein each user channel means is further for generating and combining an intended recipient user specific scrambling signal with said encoded and interleaved user information 50 signal. 16. The transmission system of claim 14 wherein said spreading means comprises: first pseudorandom noise (PN) generator means for generating said first spectrum spreading signal of 55 an In-Phase PN chip code; second PN generator means for generating said second spectrum spreading signal of a Quadrature-Phase PN chip code; and wherein said In-Phase and said Quadrature-Phase PN 60 chip codes are each of a different polynomial function. 17. The transmission system of claim 16 wherein said pilot channel means comprises: pilot channel Walsh function generator means for 65 generating said pilot channel orthogonal function signal comprised of a Walsh function chip sequence of zero state chips; pilot channel first combiner means for receiving and combining said first spectrum spreading signal with said pilot channel orthogonal function signal, and providing said first pilot channel output signal; and pilot channel second combiner means for receiving and combining said second spectrum spreading signal with said pilot channel orthogonal function signal, and providing said second pilot channel output signal. 18. The transmission system of claim 17 wherein each user channel means comprises: user channel Walsh function generator means for generating said respective user channel orthogonal function signal comprised of a selected Walsh function chip sequence of zero and one state chips; user channel first combiner means for receiving and combining said respective user information signal with said generated user channel orthogonal function signal, and providing said user channel orthogonalized information signal; user channel second combiner means for receiving and combining said first spreading spectrum signal with said user channel orthogonalized information signal, and providing said first user channel output signal; and user channel third combiner means for receiving and combining said second spectrum spreading signal with said generated user channel orthogonalized information signal, and providing said second user channel output signal. 19. The transmission system of claim 18 wherein each auxiliary channel means comprises: auxiliary channel Walsh function generator means for generating said respective auxiliary channel orthogonal function signal comprised of a selected Walsh function chip sequence of zero and one state chips; auxiliary channel first combiner means for receiving and combining said respective auxiliary information signal with said generated auxiliary channel orthogonal function signal, and providing said auxiliary channel orthogonalized information signal: auxiliary channel second combiner means for receiving and combining said first spectrum spreading signal with said auxiliary channel orthogonalized information signal, and providing said first auxiliary channel output signal; and auxiliary channel third combiner means for receiving and combining said second spectrum spreading signal with said generated auxiliary channel orthogonalized information signal, and providing said second auxiliary channel output signal. 20. The modulator of claim 12 wherein each user information signal is comprised of a sequence of fixed time frames of data wherein each data frame is comprised of a variable number of bits of variable rate vo-coded voice data. 21. The modulator of claim 20 wherein each input user information signal frame of data further comprises a cyclic redundancy check code (CRCC) bits, said CRCC computed based upon each respective frame data bits. 22. The modulator of claim 21 wherein certain input user information signal data frames of is further comprised of power control bit data. 23. In a code division multiple access (CDMA) cellular telephone system, a cell-site transmission system for spread spectrum modulation and transmission of a plurality of input digital user information signals each containing user information intended for a respective recipient user, said transmissin system comprising: - a spectrum spreading signal generator comprising: - (a) an In-Phase channel pseudorandom noise (PN) 5 generator having an output; and - (b) an Quadrature-Phase channel PN generator having an output; - a pilot channel signal generator comprising: - (a) a pilot channel Walsh function generator having 10 an output; - (b) pilot channel first and second exclusive-OR gates each having a pair of inputs and an output, one input of each of said pilot channel first and second exclusive-OR gates coupled to said pilot channel Walsh function generator output, another input of said pilot channel first exclusive-OR gate input coupled to said In-Phase channel PN generator output, and another input of said pilot channel second exclusive-OR gate input coupled to said Quadrature-Phase channel PN generator output; - (c) pilot channel first and second finite impulse response (FIR) filters each having an input and an output, said pilot channel first FIR filter input coupled to said pilot channel first exclusive-OR gate output and said pilot channel second FIR filter input coupled to said pilot channel second exclusive-OR gate output; and - (d) pilot channel first and second gain control elements each having a pair of inputs and an output, one input of each of said pilot channel first and second gain control elements receiving a respective one of a plurality of gain control signals, another input of said pilot channel gain first control element coupled to said pilot channel first FIR filter output, and another input of said pilot channel second gain control element coupled to said pilot channel second gain control element coupled to said pilot channel second FIR filter output; - a plurality of user channel signal generators each comprising: - (a) a user channel Walsh function generator having an input and an output, each user channel Walsh function generator input receiving a function 45 select signal; - (b) a user channel first exclusive-OR gate having a pair of inputs and an output, one input of said user channel first exclusive-OR gate for receiving a respective input digital user information signal and
another input of said user channel first exclusive-OR gate coupled to said user channel Walsh function generator output; - (c) user channel second and third exclusive-OR gates each having a pair of inputs and an output, 55 one input of each of said user channel second and third exclusive-OR gates coupled to said user channel first exclusive-OR gate output, another input of said user channel second exclusive-OR gate input coupled to said In-Phase channel PN 60 generator output, and another input of said user channel third exclusive OR gate input coupled to said Quadrature-Phase channel PN generator output: - (d) user channel first and second FIR filters each 65 having an input and an output, said user channel first FIR filter input coupled to said user channel second exclusive-OR gate output and said user - channel second FIR filter input coupled to said user channel third exclusive-OR gate output; and - (e) user channel first and second gain control elements each having a pair of inputs and an output, one input of each of said user channel first and second gain control elements receiving a respective one of said plurality of gain control signals, another input of said user channel first gain control element coupled to said user channel first FIR filter output, and another input of said user channel second gain control element coupled to said user channel second FIR filter output; and - a transmit power amplifier comprising: - (a) first and second sets of digital to analog (D/A) converters, each D/A converter having an input and an output, each D/A converter of said first set having an input coupled to an output of a respective one of said pilot channel first gain control element and said user channel first gain control elements, and each D/A converter of said second set having an input coupled to an output of a respective one of said pilot channel second gain control element and said user channel second gain control elements: - (b) first summer and second summers each having a plurality of inputs and an output, each one of said first summer inputs coupled to an output of a respective D/A converter of said first set of D/A converters and said second summer inputs coupled to an output of a respective D/A converter of said second set of D/A converters; - (c) first and second mixers each having a pair of inputs and an output, one input of said first mixer coupled to said first summer output, another input of said first mixer receiving a first local oscillator signal, one input of said second mixer coupled to said second summer output, and another input of said second mixer receiving a second local oscillator signal; - (d) a third summer having a pair of inputs and an output, one input of said third summer coupled to said first mixer output and another input of said third summer coupled to said second mixer output; - (e) a third mixer having a pair of inputs and an output, one input of said third mixer coupled to said third summer output and another input of said third mixer for receiving an RF carrier signal. - (f) a bandpass filter having an input and an output, said bandpass filter input coupled to said third mixer output; and - (g) a variable gain RF amplifier having a pair of inputs and an output, one input of said RF amplifier coupled to said bandpass filter output, another input of said RF amplifier for receiving an RF power gain control signal and said RF amplifier output for coupling to an antenna system. - input of said user channel second exclusive-OR gate input coupled to said In-Phase channel PN 60 In-Phase channel PN generator output, and another input of said user channel third exclusive OR gate input coupled to said Quadrature-Phase channel PN generator generator generator as said Quadrature-Phase channel PN generator generator output; 24. The transmission system of claim 23 wherein said In-Phase channel PN generator generates from a first polynomial function an In-Phase PN signal and said Quadrature-Phase channel PN generator generator generator generator output; - 25. The transmission system of claim 24 wherein said pilot channel Walsh function generator generates a pilot channel Walsh function signal representative of a predetermined Walsh function, and each of said user channel Walsh function generators generate, in response to a respectively received function select signal, a respective user channel Walsh function signal representative of a different Walsh function with respect to one another and said pilot channel Walsh function. 26. The transmission system of claim 25 wherein each user channel further comprises: - a convolutional encoder having an input and an output, said convolutional encoder input receiving said respective input digital user information signal; 10 - a convolutional interleaver having an input and an output, said convolutional interleaver input coupled to said convolutional encoder output; - a user channel PN generator having an output and capable of generating a user channel PN signal of a 15 user specific PN code; - a user channel fourth exclusive-OR gate having a pair of inputs and an output, one input of said user channel fourth exclusive-OR gate coupled to said user channel PN generator output, another input of said 20 user channel fourth exclusive-OR gate coupled to said convolutional interleaver output, and said user channel fourth exclusive-OR gate output coupled to said one input of said user channel first exclusive-OR gate. - 27. The transmission system of claim 23 wherein said pilot channel Walsh function generator generates a pilot channel Walsh function signal representative of a predetermined Walsh function, and each of said user channel Walsh function generators generate, in response to a 30 respectively received function select signal, a respective user channel Walsh function signal representative of a different Walsh function with respect to one another and said pilot channel Walsh function. - 28. The transmission system of claim 23 wherein each 35 user channel further comprises: - a convolutional encoder having an input and an output, said convolutional encoder input receiving said respective input digital user information signal; and - a convolutional interleaver having an input and an output, said convolutional interleaver input coupled to said convolutional encoder output and said convolutional interleaver output coupled to said one input of said first user channel exclusive-OR 45 gate. - 29. The transmission system of claim 28 wherein each user channel further comprises: - a user channel PN generator having an output and capable of generating a user channel PN signal of a 50 user specific PN code: - a user channel fourth exclusive-OR gate disposed between said convolutional interleaver and said user channel first exclusive-OR gate, said user channel fourth exclusive-OR gate having a pair of 55 inputs and an output, one input of said user channel fourth exclusive-OR gate coupled to said user channel PN generator output, another input of said user channel fourth exclusive-OR gate coupled to said convolutional interleaver output, and said user 60 channel fourth exclusive-OR gate output coupled to said one input of said user channel first exclusive-OR gate. - 30. The transmission system of claim 23 further comprising a sync channel signal generator, said sync chan-65 nel signal generator comprising: - (a) a sync channel Walsh function generator having an output: - (b) a sync channel first exclusive-OR gate having a pair of inputs and an output, one input of said sync channel first exclusive-OR gate for receiving an input digital sync channel information signal bearing system information, and another input of said sync channel first exclusive-OR gate coupled to said sync channel Walsh function generator output: - (c) sync channel second and third exclusive-OR gates each having a pair of inputs and an output, one input of each of said sync channel second and third exclusive-OR gates coupled to said sync channel first exclusive-OR gate output, another input of said sync channel second exclusive-OR gate input coupled to said In-Phase channel PN generator output, and another input of said sync channel third exclusive-OR gate input coupled to said Quadrature-Phase channel PN generator output; - (d) sync channel first and second FIR filters each having an input and an output, said sync channel first FIR filter input coupled to said sync channel second exclusive-OR gate output and said sync channel second FIR filter input coupled to said sync channel third exclusive-OR gate output; and - (e) sync channel first and second gain control elements each having a pair of inputs and an output, one input of each of said sync channel first and second gain control elements receiving a respective one of said plurality of gain control signals, another input of said sync channel first gain control element coupled to said sync channel first FIR filter output, another input of said sync channel second gain control element coupled to said sync channel second FIR filter output, and wherein said sync channel first FIR filter output is coupled to an input of a corresponding D/A converter of said first set and said second sync channel FIR filter output coupled to a corresponding D/A converter of said second set. - 31. The transmission system of claim 30 further comprising a paging channel signal generator, said paging channel signal generator comprising: - (a) a paging channel Walsh function generator having an output; - (b) a paging channel first exclusive-OR gate having a pair of inputs and an output, one input of said paging channel first exclusive-OR gate for receiving an input digital paging channel information signal bearing intended recipient user communication request information, and another input of said paging channel first exclusive-OR gate coupled to said paging channel Walsh function generator output; - (c) channel second and third paging exclusive-OR gates each having
a pair of inputs and an output, one input of each of said paging channel second and third exclusive-OR gates coupled to said paging channel first exclusive-OR gate output, another input of said paging channel second exclusive-OR gates input coupled to said In-Phase channel PN generator output, and another input of said paging channel third exclusive-OR gate input coupled to said Quadrature-Phase channel PN generator output; - (d) paging channel first and second FIR filters each having an input and an output, said paging channel first FIR filter input coupled to said paging channel second exclusive-OR gate output and said paging channel second FIR filter input coupled to said paging channel third exclusive-OR gate output; and - (e) paging channel first and second gain control elements each having a pair of inputs and an output, one input of each of said paging channel first and second gain control elements receiving a respective one of said plurality of gain control signals, another input of said paging channel first gain control element coupled to said paging channel first FIR filter output, another input of said paging channel second gain control element coupled to said paging channel second FIR filter output, and wherein said paging channel first FIR filter output is coupled to an input of a corresponding D/A converter of said first set and said second paging channel FIR filter output coupled to a corresponding D/A converter of said second set. - 32. The transmission system of claim 31 wherein said pilot channel Walsh function generator generates a pilot channel Walsh function signal representative of a first predetermined Walsh function, said sync channel Walsh function generator generates a sync channel Walsh function signal representative of a second predetermined Walsh function, said paging channel Walsh function generator generates a paging channel Walsh function signal representative of a third predetermined Walsh function, and each of said user channel Walsh function generators generate, in response to a respectively received function select signal, a respective user 30 channel Walsh function signal representative of a different Walsh function with respect to one another and said first, second and third predetermined Walsh functions. - 33. A method for modulating a digital user information signal for transmission to an intended recipient 35 user, comprising the steps of: generating a Walsh function signal representative of a Walsh function selected from a plurality of Walsh functions: - combining a user information signal and said Walsh 40 function signal, so as to provide a resultant intermediate modulation signal; - generating at least one spectrum spreading PN signal; and - combining said intermediate modulation signal respectively with each of said spectrum spreading PN signals so as to provide corresponding resultant output modulation signals for transmission to an intended recipient user. - 34. The method of claim 33 further comprising the step of error correction encoding said user information signal. - 35. The method of claim 34 further comprising the step of interleaving said error correction encoded user information signal. - 36. The method of claim 33 further comprising the steps of: generating a carrier signal; modulating said first and second output modulation 60 signals upon said carrier signal; and transmitting said modulated carrier signal. - 37. The modulator of claim 33 further comprising the step of: - generating a scrambling signal unique to said in- 65 tended recipient user; and - combining said scrambling signal with said user information signal and said Walsh function signal. - 38. The modulator of claim 37 wherein said scrambling signal is of a user PN code sequence unique to said intended recipient user. - 39. In a code division multiple access (CDMA) communication system, a method for spread spectrum modulation and transmission of a plurality of input digital user information signals each intended for a respective recipient user, said method comprising the steps of: generating first and second spectrum spreading signals: generating a pilot channel orthogonal function signal representative of a first orthogonal function selected from a set of orthogonal functions: combining said first and second spectrum spreading signals with said pilot channel orthogonal function signal so as to form first and second pilot channel output signals; receiving in parallel a plurality of user information signals each intended for a different recipient user: generating for each received user information signal a respective user channel orthogonal function signal representative of a selected one of said orthogonal functions of said set of orthogonal functions wherein each user channel means orthogonal function signal is of a different orthogonal function with respect to each other user channel orthogonal function signal and said pilot channel orthogonal function signal: combining each user information signal with a respective user channel orthogonal function signal so as to form a respective resultant user channel orthogonalized information signal: combining each user channel orthogonalized information signal with said first and second spectrum spreading signals so as to form respective pairs of first and second user channel output signals: converting said first and second pilot channel output signals to analog form; converting each each pair of first and second user channel output signals to analog form; combining said analog first pilot channel output signal and each analog first user channel output signal so as to form a first combined signal; combining said analog second pilot channel output signal and each analog second user channel output signal so as to form a second combined signal; generating first and second carrier signals; combining said first combined signal with said first carrier signal so as to form a first modulated carrier signal; combining said second combined signal with said second carrier signal, so as to form a second modulated carrier signal; combining said first and second modulated carrier signals so as to form a composite modulated carrier signal; and transmitting said composite modulated carrier signal. 40. The method of claim 39 further comprising the steps of: receiving in parallel at least one respective auxiliary channel information signal; generating for each received auxiliary channel information signal an auxiliary channel orthogonal function signal representative of a selected one of said orthogonal functions of said set of orthogonal functions wherein each auxiliary channel orthogonal function signal is of a different orthogonal function with respect to each other auxiliary channel orthogonal function signal, each user channel orthogonal function signal and said pilot channel orthogonal function signal; combining each auxiliary channel information signal with a respective auxiliary channel orthogonal 5 function signal so as to form a respective resultant auxiliary channel orthogonalized information signal: combining each auxiliary channel orthogonalized information signal with said first and second spectrum spreading signals so as to form respective pairs of auxiliary channel first and second auxiliary channel output signals; and converting each pair of first and second auxiliary channel output signals to analog form; combining each analog first auxiliary channel output signal with said analog first pilot channel output signal and each analog first user channel output signal in said first combined signal; combining each analog second auxiliary channel output signal with said analog second pilot channel output signal and each second user channel output signal in said second combined signal. 41. The method of claim 40 further comprising the steps of forward error correction encoding and inter- 25 leaving data bits of said user information signal. 42. The method of claim 41 further comprising the steps of generating and combining an intended recipient user specific scrambling signal with said encoded and interleaved user information signal. 43. The method of claim 41 further comprising the step of providing each user information signal as a se- quence of fixed time frames of data wherein each data frame is comprised of a variable number of bits of variable rate vocoded voice data. 44. The method of claim 43 further comprising the steps of: generating, for each frame of each input user information signal, bits of a cyclic redundancy check code CRCC; and providing said generated CRCC bits in each corresponding frame of each input user information signal. 45. The method of claim 44 further comprising the step of inserting, in certain input user information signal data frames, power control bit data. 46. The method of claim 41 wherein said first spectrum spreading signal is of an In-Phase pseudorandom noise (PN) chip code, said second spectrum spreading signal is of a Quadrature-Phase PN chip code, and said In-Phase and Quadrature-Phase PN chip codes are each generated from a different polynomial function. 47. The method of claim 46 wherein said said pilot channel orthogonal function signal is comprised of a Walsh function chip sequence of zero state chips. 48. The method of claim 47 wherein each user channel orthogonal function signal comprised of a selected Walsh function chip sequence of zero and one state chips. 49. The method of claim 48 wherein each auxiliary channel orthogonal function signal comprised of a se-30 lected Walsh function chip sequence of zero and one state chips. 40 45 50 55 60 ## US005107225A # United States Patent [19] Wheatley, III et al. [11] Patent Number: 5,107,225 [45] Date of Patent: Apr. 21, 1992 ## [54] HIGH DYNAMIC RANGE CLOSED LOOP AUTOMATIC GAIN CONTROL CIRCUIT [75] Inventors: Charles E. Wheatley, III, Del Mar: Derek N. Punch, San Diego, both of Calif. [73] Assignee: QUALCOMM Incorporated, San Diego, Calif. [21] Appl. No.: 620,092
[22] Filed: Nov. 30, 1990 [51] Int. Cl.⁵ H03G 3/30 [52] U.S. Cl. 330/279; 455/239.1; 330/281 [56] References Cited **U.S. PATENT DOCUMENTS** Primary Examiner—Steven Mottola Attorney, Agent, or Firm—Russell B. Miller ## [57] ABSTRACT A closed loop automatic gain control (AGC) circuit with high dynamic range capabilities having an amplifier circuit for receiving an input signal, which is susceptible to variations in signal power, and a control signal. The amplifier circuit is responsive to the control signal for amplifying the input signal at a gain level corresponding to the control signal so as to provide a corresponding output signal. A measurement circuit is coupled to the amplifier means for measuring logarithmic signal power of the amplified input signal and providing a corresponding linear measurement signal. An integration circuit is included for receiving the measurement signal, and a reference signal which corresponds to a desired signal power of the output signal. The integration circuit integrates with respect to time the difference between the measurement signal and the reference signal, and generates the control signal which corresponds to the result of the integration. ### 22 Claims, 3 Drawing Sheets FIG. 1